Код ошибки http 415

While using images, video, and GIFs was not typical in the early days of the web, we now expect that a site offers appealing visuals as well as informative text. It’s also no surprise that when the communication between the browser and server goes awry due to a mismatch in media you’ll see an error. In this case, the “HTTP 415” error.

Because media is almost a prerequisite of the modern web, seeing an error relating to it means you’ll need a fix, fast. However, unlike other error fixes – especially for WordPress websites – this issue is one tough cookie. You may need some coding knowledge to solve this one, but this is something for later on.

Check Out Our Video Guide to Fixing the 415 Error

For this post, we’re going to look into the “HTTP 415” error, and talk about what causes it. From there, we’ll discuss how you’d fix it.

What the HTTP 415 Error Is

The “HTTP 415” error is one of many 4XX status codes. If you understand that it buddies up with errors such as a 404, you’ll begin to understand what’s happening.

In short, 4XX errors all deal with something missing that either the client or the server needs. The full name of the error – a “415 Unsupported Media Type” – gives the game away. The server is receiving a media file type that it doesn’t recognize or can’t accept.

Under most circumstances, you’ll see the “HTTP 415” error when you use an application programming interface (API). It’s a server-side issue, and next, we’ll discuss why this happens in the first place.

When the communication between the browser & server goes awry due to a mismatch in media, you’ll see an error. In this case, the “HTTP 415” error. 😅 Learn how to fix it here ✅Click to Tweet

Why the HTTP 415 Error Happens

Regardless of what you call it – the “HTTP 415” error, the “415 Unsupported Media Type” error – it means that the server refuses to accept a request from the browser. This will often be because whatever the browser sends (the payload) isn’t in the right format.

It’s a similar issue to the “422 Unprocessable Entity” error, as they both deal with the wrong data hitting the server, and the latter freaking out. It’s also worth pointing out that there is a distinction between the data the browser sends, and what the server receives. They may appear to be the same, but there’s a difference.

For example, a general error-catching strategy will stop a user from taking an unrecognized file type and uploading it through an interface that only accepts PNGs. However, if you don’t specify the exact types of media a server can process, it would trigger an error on the back end. On the front end, a user might not see anything at all. WordPress users get an admin screen notification:

The WordPress Upload New Media screen, showing the uploader dialog with a Select Files button, information on the maximum file size, and an admin error that shows a ‘file type not permitted’ error, and details of the file.

The File Type Not Permitted error within WordPress.

The good news is that WordPress has a permissive infrastructure – think of the different file types you can upload to the Media Library, for example.

Even so, this is a developer-level issue rather than user error. As such, we’ll dive into what the fixes might be next.

How To Fix the HTTP 415 Error

To recap, the “HTTP 415” error tells you that the server won’t accept a file type because it doesn’t support that payload. This means there’s an issue within the underlying PHP code that needs a fix.

At this point, if you aren’t the developer of the site or theme, and you don’t have any coding skills, you’ll likely want to contact someone with expertise. Poking around in your theme’s files could cause an issue.

However, the Mozilla documentation on the error gives you two clues to begin your search – two ‘representation headers’: Content-Type, and Content-Encoding.

How the Content-Type and Content-Encoding Headers Work

The Content-Type header provides the client request with the resource before any encoding happens. It indicates the original media type of the resource. For example:


Content-Type: text/html; charset=UTF-8

Content-Type: image/jpeg;

In contrast, Content-Encoding is a list of all of the encodings the payload (i.e. your media) has, which is an indicator of how the file should be decoded in order to get the original payload.


Content-Encoding: gzip

Content-Encoding: br

As you can tell, file compression is a common way to encode data. This isn’t a problem in theory but will be if you don’t code this into the relevant files for your theme or plugin.

Finding a Fix For the HTTP 415 Error Code

Given the above, you’ll have three avenues to explore if you uncover an HTTP 415 error – all of them relating to your PHP code:

  • You’ll want to ensure you send the right Content-Type header value.
  • You will also want to make sure that the server can process whatever you specify for the Content-Type header.
  • Check over what the server can process through the Accept header.

You won’t necessarily do this within core files, although you may do so as part of a REST API request. For example, a user from Stack Overflow had this exact issue when using pure PHP over cURL to make an API request.

There are two places to look. First, specify the correct file types within the Content-Type header:


$headers = array (

    ‘Content-Type’ => ‘application/json’,

   …

Second, this user had a typo while declaring an invalid header key using the wp_remote_post() function:


$arg = array (

    'header' => $headers,

    …

Because “header” misses an “s”, it would throw the “HTTP 415” error. However, you’ll also want to make sure that the client can accept the right file types too. You’ll do this through another header: Accept. For example:


Accept: text/html

Accept: image/*

This makes sure both ends of the chain – the client and server side – can accept and send the right file types, and put a halt to the “HTTP 415” error for good.

Let’s look into the “HTTP 415” error- and talk about what causes it- in this guide 🚀Click to Tweet

Summary

Website errors are often straightforward to fix. We’ve done so a number of times on the Kinsta blog, and the nature of the platform means you can be ready to rock and roll in a short while. However, the “HTTP 415” is different, in that a fix is hard to come by if you’re not a developer.

The solution is to work with the Content-Type header values to make sure you send the right one to the server. You may also have a simple typo. This seems like a “doh” moment, but in this case, they can be tricky to spot, especially if your concern is with the content types you send to the server.

While the “HTTP 415” error is yours to fix, for other issues with your website, Kinsta is on call. We have our support team standing by to help you understand your site on the rare occasions it fails to load.

Page semi-protected

From Wikipedia, the free encyclopedia

This is a list of Hypertext Transfer Protocol (HTTP) response status codes. Status codes are issued by a server in response to a client’s request made to the server. It includes codes from IETF Request for Comments (RFCs), other specifications, and some additional codes used in some common applications of the HTTP. The first digit of the status code specifies one of five standard classes of responses. The optional message phrases shown are typical, but any human-readable alternative may be provided, or none at all.

Unless otherwise stated, the status code is part of the HTTP standard (RFC 9110).

The Internet Assigned Numbers Authority (IANA) maintains the official registry of HTTP status codes.[1]

All HTTP response status codes are separated into five classes or categories. The first digit of the status code defines the class of response, while the last two digits do not have any classifying or categorization role. There are five classes defined by the standard:

  • 1xx informational response – the request was received, continuing process
  • 2xx successful – the request was successfully received, understood, and accepted
  • 3xx redirection – further action needs to be taken in order to complete the request
  • 4xx client error – the request contains bad syntax or cannot be fulfilled
  • 5xx server error – the server failed to fulfil an apparently valid request

1xx informational response

An informational response indicates that the request was received and understood. It is issued on a provisional basis while request processing continues. It alerts the client to wait for a final response. The message consists only of the status line and optional header fields, and is terminated by an empty line. As the HTTP/1.0 standard did not define any 1xx status codes, servers must not[note 1] send a 1xx response to an HTTP/1.0 compliant client except under experimental conditions.

100 Continue
The server has received the request headers and the client should proceed to send the request body (in the case of a request for which a body needs to be sent; for example, a POST request). Sending a large request body to a server after a request has been rejected for inappropriate headers would be inefficient. To have a server check the request’s headers, a client must send Expect: 100-continue as a header in its initial request and receive a 100 Continue status code in response before sending the body. If the client receives an error code such as 403 (Forbidden) or 405 (Method Not Allowed) then it should not send the request’s body. The response 417 Expectation Failed indicates that the request should be repeated without the Expect header as it indicates that the server does not support expectations (this is the case, for example, of HTTP/1.0 servers).[2]
101 Switching Protocols
The requester has asked the server to switch protocols and the server has agreed to do so.
102 Processing (WebDAV; RFC 2518)
A WebDAV request may contain many sub-requests involving file operations, requiring a long time to complete the request. This code indicates that the server has received and is processing the request, but no response is available yet.[3] This prevents the client from timing out and assuming the request was lost. The status code is deprecated.[4]
103 Early Hints (RFC 8297)
Used to return some response headers before final HTTP message.[5]

2xx success

This class of status codes indicates the action requested by the client was received, understood, and accepted.[1]

200 OK
Standard response for successful HTTP requests. The actual response will depend on the request method used. In a GET request, the response will contain an entity corresponding to the requested resource. In a POST request, the response will contain an entity describing or containing the result of the action.
201 Created
The request has been fulfilled, resulting in the creation of a new resource.[6]
202 Accepted
The request has been accepted for processing, but the processing has not been completed. The request might or might not be eventually acted upon, and may be disallowed when processing occurs.
203 Non-Authoritative Information (since HTTP/1.1)
The server is a transforming proxy (e.g. a Web accelerator) that received a 200 OK from its origin, but is returning a modified version of the origin’s response.[7][8]
204 No Content
The server successfully processed the request, and is not returning any content.
205 Reset Content
The server successfully processed the request, asks that the requester reset its document view, and is not returning any content.
206 Partial Content
The server is delivering only part of the resource (byte serving) due to a range header sent by the client. The range header is used by HTTP clients to enable resuming of interrupted downloads, or split a download into multiple simultaneous streams.
207 Multi-Status (WebDAV; RFC 4918)
The message body that follows is by default an XML message and can contain a number of separate response codes, depending on how many sub-requests were made.[9]
208 Already Reported (WebDAV; RFC 5842)
The members of a DAV binding have already been enumerated in a preceding part of the (multistatus) response, and are not being included again.
226 IM Used (RFC 3229)
The server has fulfilled a request for the resource, and the response is a representation of the result of one or more instance-manipulations applied to the current instance.[10]

3xx redirection

This class of status code indicates the client must take additional action to complete the request. Many of these status codes are used in URL redirection.[1]

A user agent may carry out the additional action with no user interaction only if the method used in the second request is GET or HEAD. A user agent may automatically redirect a request. A user agent should detect and intervene to prevent cyclical redirects.[11]

300 Multiple Choices
Indicates multiple options for the resource from which the client may choose (via agent-driven content negotiation). For example, this code could be used to present multiple video format options, to list files with different filename extensions, or to suggest word-sense disambiguation.
301 Moved Permanently
This and all future requests should be directed to the given URI.
302 Found (Previously «Moved temporarily»)
Tells the client to look at (browse to) another URL. The HTTP/1.0 specification (RFC 1945) required the client to perform a temporary redirect with the same method (the original describing phrase was «Moved Temporarily»),[12] but popular browsers implemented 302 redirects by changing the method to GET. Therefore, HTTP/1.1 added status codes 303 and 307 to distinguish between the two behaviours.[11]
303 See Other (since HTTP/1.1)
The response to the request can be found under another URI using the GET method. When received in response to a POST (or PUT/DELETE), the client should presume that the server has received the data and should issue a new GET request to the given URI.
304 Not Modified
Indicates that the resource has not been modified since the version specified by the request headers If-Modified-Since or If-None-Match. In such case, there is no need to retransmit the resource since the client still has a previously-downloaded copy.
305 Use Proxy (since HTTP/1.1)
The requested resource is available only through a proxy, the address for which is provided in the response. For security reasons, many HTTP clients (such as Mozilla Firefox and Internet Explorer) do not obey this status code.
306 Switch Proxy
No longer used. Originally meant «Subsequent requests should use the specified proxy.»
307 Temporary Redirect (since HTTP/1.1)
In this case, the request should be repeated with another URI; however, future requests should still use the original URI. In contrast to how 302 was historically implemented, the request method is not allowed to be changed when reissuing the original request. For example, a POST request should be repeated using another POST request.
308 Permanent Redirect
This and all future requests should be directed to the given URI. 308 parallel the behaviour of 301, but does not allow the HTTP method to change. So, for example, submitting a form to a permanently redirected resource may continue smoothly.

4xx client errors

A The Wikimedia 404 message

This class of status code is intended for situations in which the error seems to have been caused by the client. Except when responding to a HEAD request, the server should include an entity containing an explanation of the error situation, and whether it is a temporary or permanent condition. These status codes are applicable to any request method. User agents should display any included entity to the user.

400 Bad Request
The server cannot or will not process the request due to an apparent client error (e.g., malformed request syntax, size too large, invalid request message framing, or deceptive request routing).
401 Unauthorized
Similar to 403 Forbidden, but specifically for use when authentication is required and has failed or has not yet been provided. The response must include a WWW-Authenticate header field containing a challenge applicable to the requested resource. See Basic access authentication and Digest access authentication. 401 semantically means «unauthorised», the user does not have valid authentication credentials for the target resource.
Some sites incorrectly issue HTTP 401 when an IP address is banned from the website (usually the website domain) and that specific address is refused permission to access a website.[citation needed]
402 Payment Required
Reserved for future use. The original intention was that this code might be used as part of some form of digital cash or micropayment scheme, as proposed, for example, by GNU Taler,[14] but that has not yet happened, and this code is not widely used. Google Developers API uses this status if a particular developer has exceeded the daily limit on requests.[15] Sipgate uses this code if an account does not have sufficient funds to start a call.[16] Shopify uses this code when the store has not paid their fees and is temporarily disabled.[17] Stripe uses this code for failed payments where parameters were correct, for example blocked fraudulent payments.[18]
403 Forbidden
The request contained valid data and was understood by the server, but the server is refusing action. This may be due to the user not having the necessary permissions for a resource or needing an account of some sort, or attempting a prohibited action (e.g. creating a duplicate record where only one is allowed). This code is also typically used if the request provided authentication by answering the WWW-Authenticate header field challenge, but the server did not accept that authentication. The request should not be repeated.
404 Not Found
The requested resource could not be found but may be available in the future. Subsequent requests by the client are permissible.
405 Method Not Allowed
A request method is not supported for the requested resource; for example, a GET request on a form that requires data to be presented via POST, or a PUT request on a read-only resource.
406 Not Acceptable
The requested resource is capable of generating only content not acceptable according to the Accept headers sent in the request. See Content negotiation.
407 Proxy Authentication Required
The client must first authenticate itself with the proxy.
408 Request Timeout
The server timed out waiting for the request. According to HTTP specifications: «The client did not produce a request within the time that the server was prepared to wait. The client MAY repeat the request without modifications at any later time.»
409 Conflict
Indicates that the request could not be processed because of conflict in the current state of the resource, such as an edit conflict between multiple simultaneous updates.
410 Gone
Indicates that the resource requested was previously in use but is no longer available and will not be available again. This should be used when a resource has been intentionally removed and the resource should be purged. Upon receiving a 410 status code, the client should not request the resource in the future. Clients such as search engines should remove the resource from their indices. Most use cases do not require clients and search engines to purge the resource, and a «404 Not Found» may be used instead.
411 Length Required
The request did not specify the length of its content, which is required by the requested resource.
412 Precondition Failed
The server does not meet one of the preconditions that the requester put on the request header fields.
413 Payload Too Large
The request is larger than the server is willing or able to process. Previously called «Request Entity Too Large» in RFC 2616.[19]
414 URI Too Long
The URI provided was too long for the server to process. Often the result of too much data being encoded as a query-string of a GET request, in which case it should be converted to a POST request. Called «Request-URI Too Long» previously in RFC 2616.[20]
415 Unsupported Media Type
The request entity has a media type which the server or resource does not support. For example, the client uploads an image as image/svg+xml, but the server requires that images use a different format.
416 Range Not Satisfiable
The client has asked for a portion of the file (byte serving), but the server cannot supply that portion. For example, if the client asked for a part of the file that lies beyond the end of the file. Called «Requested Range Not Satisfiable» previously RFC 2616.[21]
417 Expectation Failed
The server cannot meet the requirements of the Expect request-header field.[22]
418 I’m a teapot (RFC 2324, RFC 7168)
This code was defined in 1998 as one of the traditional IETF April Fools’ jokes, in RFC 2324, Hyper Text Coffee Pot Control Protocol, and is not expected to be implemented by actual HTTP servers. The RFC specifies this code should be returned by teapots requested to brew coffee.[23] This HTTP status is used as an Easter egg in some websites, such as Google.com’s «I’m a teapot» easter egg.[24][25][26] Sometimes, this status code is also used as a response to a blocked request, instead of the more appropriate 403 Forbidden.[27][28]
421 Misdirected Request
The request was directed at a server that is not able to produce a response (for example because of connection reuse).
422 Unprocessable Entity
The request was well-formed but was unable to be followed due to semantic errors.[9]
423 Locked (WebDAV; RFC 4918)
The resource that is being accessed is locked.[9]
424 Failed Dependency (WebDAV; RFC 4918)
The request failed because it depended on another request and that request failed (e.g., a PROPPATCH).[9]
425 Too Early (RFC 8470)
Indicates that the server is unwilling to risk processing a request that might be replayed.
426 Upgrade Required
The client should switch to a different protocol such as TLS/1.3, given in the Upgrade header field.
428 Precondition Required (RFC 6585)
The origin server requires the request to be conditional. Intended to prevent the ‘lost update’ problem, where a client GETs a resource’s state, modifies it, and PUTs it back to the server, when meanwhile a third party has modified the state on the server, leading to a conflict.[29]
429 Too Many Requests (RFC 6585)
The user has sent too many requests in a given amount of time. Intended for use with rate-limiting schemes.[29]
431 Request Header Fields Too Large (RFC 6585)
The server is unwilling to process the request because either an individual header field, or all the header fields collectively, are too large.[29]
451 Unavailable For Legal Reasons (RFC 7725)
A server operator has received a legal demand to deny access to a resource or to a set of resources that includes the requested resource.[30] The code 451 was chosen as a reference to the novel Fahrenheit 451 (see the Acknowledgements in the RFC).

5xx server errors

The server failed to fulfil a request.

Response status codes beginning with the digit «5» indicate cases in which the server is aware that it has encountered an error or is otherwise incapable of performing the request. Except when responding to a HEAD request, the server should include an entity containing an explanation of the error situation, and indicate whether it is a temporary or permanent condition. Likewise, user agents should display any included entity to the user. These response codes are applicable to any request method.

500 Internal Server Error
A generic error message, given when an unexpected condition was encountered and no more specific message is suitable.
501 Not Implemented
The server either does not recognize the request method, or it lacks the ability to fulfil the request. Usually this implies future availability (e.g., a new feature of a web-service API).
502 Bad Gateway
The server was acting as a gateway or proxy and received an invalid response from the upstream server.
503 Service Unavailable
The server cannot handle the request (because it is overloaded or down for maintenance). Generally, this is a temporary state.[31]
504 Gateway Timeout
The server was acting as a gateway or proxy and did not receive a timely response from the upstream server.
505 HTTP Version Not Supported
The server does not support the HTTP version used in the request.
506 Variant Also Negotiates (RFC 2295)
Transparent content negotiation for the request results in a circular reference.[32]
507 Insufficient Storage (WebDAV; RFC 4918)
The server is unable to store the representation needed to complete the request.[9]
508 Loop Detected (WebDAV; RFC 5842)
The server detected an infinite loop while processing the request (sent instead of 208 Already Reported).
510 Not Extended (RFC 2774)
Further extensions to the request are required for the server to fulfil it.[33]
511 Network Authentication Required (RFC 6585)
The client needs to authenticate to gain network access. Intended for use by intercepting proxies used to control access to the network (e.g., «captive portals» used to require agreement to Terms of Service before granting full Internet access via a Wi-Fi hotspot).[29]

Unofficial codes

The following codes are not specified by any standard.

419 Page Expired (Laravel Framework)
Used by the Laravel Framework when a CSRF Token is missing or expired.
420 Method Failure (Spring Framework)
A deprecated response used by the Spring Framework when a method has failed.[34]
420 Enhance Your Calm (Twitter)
Returned by version 1 of the Twitter Search and Trends API when the client is being rate limited; versions 1.1 and later use the 429 Too Many Requests response code instead.[35] The phrase «Enhance your calm» comes from the 1993 movie Demolition Man, and its association with this number is likely a reference to cannabis.[citation needed]
430 Request Header Fields Too Large (Shopify)
Used by Shopify, instead of the 429 Too Many Requests response code, when too many URLs are requested within a certain time frame.[36]
450 Blocked by Windows Parental Controls (Microsoft)
The Microsoft extension code indicated when Windows Parental Controls are turned on and are blocking access to the requested webpage.[37]
498 Invalid Token (Esri)
Returned by ArcGIS for Server. Code 498 indicates an expired or otherwise invalid token.[38]
499 Token Required (Esri)
Returned by ArcGIS for Server. Code 499 indicates that a token is required but was not submitted.[38]
509 Bandwidth Limit Exceeded (Apache Web Server/cPanel)
The server has exceeded the bandwidth specified by the server administrator; this is often used by shared hosting providers to limit the bandwidth of customers.[39]
529 Site is overloaded
Used by Qualys in the SSLLabs server testing API to signal that the site can’t process the request.[40]
530 Site is frozen
Used by the Pantheon Systems web platform to indicate a site that has been frozen due to inactivity.[41]
598 (Informal convention) Network read timeout error
Used by some HTTP proxies to signal a network read timeout behind the proxy to a client in front of the proxy.[42]
599 Network Connect Timeout Error
An error used by some HTTP proxies to signal a network connect timeout behind the proxy to a client in front of the proxy.

Internet Information Services

Microsoft’s Internet Information Services (IIS) web server expands the 4xx error space to signal errors with the client’s request.

440 Login Time-out
The client’s session has expired and must log in again.[43]
449 Retry With
The server cannot honour the request because the user has not provided the required information.[44]
451 Redirect
Used in Exchange ActiveSync when either a more efficient server is available or the server cannot access the users’ mailbox.[45] The client is expected to re-run the HTTP AutoDiscover operation to find a more appropriate server.[46]

IIS sometimes uses additional decimal sub-codes for more specific information,[47] however these sub-codes only appear in the response payload and in documentation, not in the place of an actual HTTP status code.

nginx

The nginx web server software expands the 4xx error space to signal issues with the client’s request.[48][49]

444 No Response
Used internally[50] to instruct the server to return no information to the client and close the connection immediately.
494 Request header too large
Client sent too large request or too long header line.
495 SSL Certificate Error
An expansion of the 400 Bad Request response code, used when the client has provided an invalid client certificate.
496 SSL Certificate Required
An expansion of the 400 Bad Request response code, used when a client certificate is required but not provided.
497 HTTP Request Sent to HTTPS Port
An expansion of the 400 Bad Request response code, used when the client has made a HTTP request to a port listening for HTTPS requests.
499 Client Closed Request
Used when the client has closed the request before the server could send a response.

Cloudflare

Cloudflare’s reverse proxy service expands the 5xx series of errors space to signal issues with the origin server.[51]

520 Web Server Returned an Unknown Error
The origin server returned an empty, unknown, or unexpected response to Cloudflare.[52]
521 Web Server Is Down
The origin server refused connections from Cloudflare. Security solutions at the origin may be blocking legitimate connections from certain Cloudflare IP addresses.
522 Connection Timed Out
Cloudflare timed out contacting the origin server.
523 Origin Is Unreachable
Cloudflare could not reach the origin server; for example, if the DNS records for the origin server are incorrect or missing.
524 A Timeout Occurred
Cloudflare was able to complete a TCP connection to the origin server, but did not receive a timely HTTP response.
525 SSL Handshake Failed
Cloudflare could not negotiate a SSL/TLS handshake with the origin server.
526 Invalid SSL Certificate
Cloudflare could not validate the SSL certificate on the origin web server. Also used by Cloud Foundry’s gorouter.
527 Railgun Error
Error 527 indicates an interrupted connection between Cloudflare and the origin server’s Railgun server.[53]
530
Error 530 is returned along with a 1xxx error.[54]

AWS Elastic Load Balancer

Amazon’s Elastic Load Balancing adds a few custom return codes

460
Client closed the connection with the load balancer before the idle timeout period elapsed. Typically when client timeout is sooner than the Elastic Load Balancer’s timeout.[55]
463
The load balancer received an X-Forwarded-For request header with more than 30 IP addresses.[55]
464
Incompatible protocol versions between Client and Origin server.[55]
561 Unauthorized
An error around authentication returned by a server registered with a load balancer. You configured a listener rule to authenticate users, but the identity provider (IdP) returned an error code when authenticating the user.[55]

Caching warning codes (obsoleted)

The following caching related warning codes were specified under RFC 7234. Unlike the other status codes above, these were not sent as the response status in the HTTP protocol, but as part of the «Warning» HTTP header.[56][57]

Since this «Warning» header is often neither sent by servers nor acknowledged by clients, this header and its codes were obsoleted by the HTTP Working Group in 2022 with RFC 9111.[58]

110 Response is Stale
The response provided by a cache is stale (the content’s age exceeds a maximum age set by a Cache-Control header or heuristically chosen lifetime).
111 Revalidation Failed
The cache was unable to validate the response, due to an inability to reach the origin server.
112 Disconnected Operation
The cache is intentionally disconnected from the rest of the network.
113 Heuristic Expiration
The cache heuristically chose a freshness lifetime greater than 24 hours and the response’s age is greater than 24 hours.
199 Miscellaneous Warning
Arbitrary, non-specific warning. The warning text may be logged or presented to the user.
214 Transformation Applied
Added by a proxy if it applies any transformation to the representation, such as changing the content encoding, media type or the like.
299 Miscellaneous Persistent Warning
Same as 199, but indicating a persistent warning.

See also

  • Custom error pages
  • List of FTP server return codes
  • List of HTTP header fields
  • List of SMTP server return codes
  • Common Log Format

Explanatory notes

  1. ^ Emphasised words and phrases such as must and should represent interpretation guidelines as given by RFC 2119

References

  1. ^ a b c «Hypertext Transfer Protocol (HTTP) Status Code Registry». Iana.org. Archived from the original on December 11, 2011. Retrieved January 8, 2015.
  2. ^ Fielding, Roy T. «RFC 9110: HTTP Semantics and Content, Section 10.1.1 «Expect»«.
  3. ^ Goland, Yaronn; Whitehead, Jim; Faizi, Asad; Carter, Steve R.; Jensen, Del (February 1999). HTTP Extensions for Distributed Authoring – WEBDAV. IETF. doi:10.17487/RFC2518. RFC 2518. Retrieved October 24, 2009.
  4. ^ «102 Processing — HTTP MDN». 102 status code is deprecated
  5. ^ Oku, Kazuho (December 2017). An HTTP Status Code for Indicating Hints. IETF. doi:10.17487/RFC8297. RFC 8297. Retrieved December 20, 2017.
  6. ^ Stewart, Mark; djna. «Create request with POST, which response codes 200 or 201 and content». Stack Overflow. Archived from the original on October 11, 2016. Retrieved October 16, 2015.
  7. ^ «RFC 9110: HTTP Semantics and Content, Section 15.3.4».
  8. ^ «RFC 9110: HTTP Semantics and Content, Section 7.7».
  9. ^ a b c d e Dusseault, Lisa, ed. (June 2007). HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV). IETF. doi:10.17487/RFC4918. RFC 4918. Retrieved October 24, 2009.
  10. ^ Delta encoding in HTTP. IETF. January 2002. doi:10.17487/RFC3229. RFC 3229. Retrieved February 25, 2011.
  11. ^ a b «RFC 9110: HTTP Semantics and Content, Section 15.4 «Redirection 3xx»«.
  12. ^ Berners-Lee, Tim; Fielding, Roy T.; Nielsen, Henrik Frystyk (May 1996). Hypertext Transfer Protocol – HTTP/1.0. IETF. doi:10.17487/RFC1945. RFC 1945. Retrieved October 24, 2009.
  13. ^ «The GNU Taler tutorial for PHP Web shop developers 0.4.0». docs.taler.net. Archived from the original on November 8, 2017. Retrieved October 29, 2017.
  14. ^ «Google API Standard Error Responses». 2016. Archived from the original on May 25, 2017. Retrieved June 21, 2017.
  15. ^ «Sipgate API Documentation». Archived from the original on July 10, 2018. Retrieved July 10, 2018.
  16. ^ «Shopify Documentation». Archived from the original on July 25, 2018. Retrieved July 25, 2018.
  17. ^ «Stripe API Reference – Errors». stripe.com. Retrieved October 28, 2019.
  18. ^ «RFC2616 on status 413». Tools.ietf.org. Archived from the original on March 7, 2011. Retrieved November 11, 2015.
  19. ^ «RFC2616 on status 414». Tools.ietf.org. Archived from the original on March 7, 2011. Retrieved November 11, 2015.
  20. ^ «RFC2616 on status 416». Tools.ietf.org. Archived from the original on March 7, 2011. Retrieved November 11, 2015.
  21. ^ TheDeadLike. «HTTP/1.1 Status Codes 400 and 417, cannot choose which». serverFault. Archived from the original on October 10, 2015. Retrieved October 16, 2015.
  22. ^ Larry Masinter (April 1, 1998). Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0). doi:10.17487/RFC2324. RFC 2324. Any attempt to brew coffee with a teapot should result in the error code «418 I’m a teapot». The resulting entity body MAY be short and stout.
  23. ^ I’m a teapot
  24. ^ Barry Schwartz (August 26, 2014). «New Google Easter Egg For SEO Geeks: Server Status 418, I’m A Teapot». Search Engine Land. Archived from the original on November 15, 2015. Retrieved November 4, 2015.
  25. ^ «Google’s Teapot». Retrieved October 23, 2017.[dead link]
  26. ^ «Enable extra web security on a website». DreamHost. Retrieved December 18, 2022.
  27. ^ «I Went to a Russian Website and All I Got Was This Lousy Teapot». PCMag. Retrieved December 18, 2022.
  28. ^ a b c d Nottingham, M.; Fielding, R. (April 2012). «RFC 6585 – Additional HTTP Status Codes». Request for Comments. Internet Engineering Task Force. Archived from the original on May 4, 2012. Retrieved May 1, 2012.
  29. ^ Bray, T. (February 2016). «An HTTP Status Code to Report Legal Obstacles». ietf.org. Archived from the original on March 4, 2016. Retrieved March 7, 2015.
  30. ^ alex. «What is the correct HTTP status code to send when a site is down for maintenance?». Stack Overflow. Archived from the original on October 11, 2016. Retrieved October 16, 2015.
  31. ^ Holtman, Koen; Mutz, Andrew H. (March 1998). Transparent Content Negotiation in HTTP. IETF. doi:10.17487/RFC2295. RFC 2295. Retrieved October 24, 2009.
  32. ^ Nielsen, Henrik Frystyk; Leach, Paul; Lawrence, Scott (February 2000). An HTTP Extension Framework. IETF. doi:10.17487/RFC2774. RFC 2774. Retrieved October 24, 2009.
  33. ^ «Enum HttpStatus». Spring Framework. org.springframework.http. Archived from the original on October 25, 2015. Retrieved October 16, 2015.
  34. ^ «Twitter Error Codes & Responses». Twitter. 2014. Archived from the original on September 27, 2017. Retrieved January 20, 2014.
  35. ^ «HTTP Status Codes and SEO: what you need to know». ContentKing. Retrieved August 9, 2019.
  36. ^ «Screenshot of error page». Archived from the original (bmp) on May 11, 2013. Retrieved October 11, 2009.
  37. ^ a b «Using token-based authentication». ArcGIS Server SOAP SDK. Archived from the original on September 26, 2014. Retrieved September 8, 2014.
  38. ^ «HTTP Error Codes and Quick Fixes». Docs.cpanel.net. Archived from the original on November 23, 2015. Retrieved October 15, 2015.
  39. ^ «SSL Labs API v3 Documentation». github.com.
  40. ^ «Platform Considerations | Pantheon Docs». pantheon.io. Archived from the original on January 6, 2017. Retrieved January 5, 2017.
  41. ^ «HTTP status codes — ascii-code.com». www.ascii-code.com. Archived from the original on January 7, 2017. Retrieved December 23, 2016.
  42. ^
    «Error message when you try to log on to Exchange 2007 by using Outlook Web Access: «440 Login Time-out»«. Microsoft. 2010. Retrieved November 13, 2013.
  43. ^ «2.2.6 449 Retry With Status Code». Microsoft. 2009. Archived from the original on October 5, 2009. Retrieved October 26, 2009.
  44. ^ «MS-ASCMD, Section 3.1.5.2.2». Msdn.microsoft.com. Archived from the original on March 26, 2015. Retrieved January 8, 2015.
  45. ^ «Ms-oxdisco». Msdn.microsoft.com. Archived from the original on July 31, 2014. Retrieved January 8, 2015.
  46. ^ «The HTTP status codes in IIS 7.0». Microsoft. July 14, 2009. Archived from the original on April 9, 2009. Retrieved April 1, 2009.
  47. ^ «ngx_http_request.h». nginx 1.9.5 source code. nginx inc. Archived from the original on September 19, 2017. Retrieved January 9, 2016.
  48. ^ «ngx_http_special_response.c». nginx 1.9.5 source code. nginx inc. Archived from the original on May 8, 2018. Retrieved January 9, 2016.
  49. ^ «return» directive Archived March 1, 2018, at the Wayback Machine (http_rewrite module) documentation.
  50. ^ «Troubleshooting: Error Pages». Cloudflare. Archived from the original on March 4, 2016. Retrieved January 9, 2016.
  51. ^ «Error 520: web server returns an unknown error». Cloudflare.
  52. ^ «527 Error: Railgun Listener to origin error». Cloudflare. Archived from the original on October 13, 2016. Retrieved October 12, 2016.
  53. ^ «Error 530». Cloudflare. Retrieved November 1, 2019.
  54. ^ a b c d «Troubleshoot Your Application Load Balancers – Elastic Load Balancing». docs.aws.amazon.com. Retrieved May 17, 2023.
  55. ^ «Hypertext Transfer Protocol (HTTP/1.1): Caching». datatracker.ietf.org. Retrieved September 25, 2021.
  56. ^ «Warning — HTTP | MDN». developer.mozilla.org. Retrieved August 15, 2021. CC BY-SA icon.svg Some text was copied from this source, which is available under a Creative Commons Attribution-ShareAlike 2.5 Generic (CC BY-SA 2.5) license.
  57. ^ «RFC 9111: HTTP Caching, Section 5.5 «Warning»«. June 2022.

External links

  • «RFC 9110: HTTP Semantics and Content, Section 15 «Status Codes»«.
  • Hypertext Transfer Protocol (HTTP) Status Code Registry at the Internet Assigned Numbers Authority
  • MDN status code reference at mozilla.org

I am calling a REST service with a JSON request and it responds with a HTTP 415 "Unsupported Media Type" error.

The request content type is set to ("Content-Type", "application/json; charset=utf8").

It works fine if I don’t include a JSON object in the request. I am using the google-gson-2.2.4 library for JSON.

I tried using a couple of different libraries but it made no difference.

Can anybody please help me to resolve this?

Here is my code:

public static void main(String[] args) throws Exception
{

    JsonObject requestJson = new JsonObject();
    String url = "xxx";

    //method call for generating json

    requestJson = generateJSON();
    URL myurl = new URL(url);
    HttpURLConnection con = (HttpURLConnection)myurl.openConnection();
    con.setDoOutput(true);
    con.setDoInput(true);

    con.setRequestProperty("Content-Type", "application/json; charset=utf8");
    con.setRequestProperty("Accept", "application/json");
    con.setRequestProperty("Method", "POST");
    OutputStream os = con.getOutputStream();
    os.write(requestJson.toString().getBytes("UTF-8"));
    os.close();


    StringBuilder sb = new StringBuilder();  
    int HttpResult =con.getResponseCode();
    if(HttpResult ==HttpURLConnection.HTTP_OK){
    BufferedReader br = new BufferedReader(new   InputStreamReader(con.getInputStream(),"utf-8"));  

        String line = null;
        while ((line = br.readLine()) != null) {  
        sb.append(line + "n");  
        }
         br.close(); 
         System.out.println(""+sb.toString());  

    }else{
        System.out.println(con.getResponseCode());
        System.out.println(con.getResponseMessage());  
    }  

}
public static JsonObject generateJSON () throws MalformedURLException

{
   String s = "http://www.example.com";
        s.replaceAll("/", "\/");
    JsonObject reqparam=new JsonObject();
    reqparam.addProperty("type", "arl");
    reqparam.addProperty("action", "remove");
    reqparam.addProperty("domain", "staging");
    reqparam.addProperty("objects", s);
    return reqparam;

}
}

The value of requestJson.toString() is :

{"type":"arl","action":"remove","domain":"staging","objects":"http://www.example.com"}

The 415 HTTP Status Code means that the request is unsupported media type indicates that the server rejects the request due to the payload format being unsupported. The format problem could be caused by the request’s specified Content-Type or Content-Encoding, or it could be the result of directly analyzing the data. The difference between HTTP Status Codes 400 and 415 is that the 400 HTTP Status Codes indicate that the server could not recognize the request due to invalid syntax, whereas the 415 HTTP Status Code indicates that the server does not support the required media format, and thus rejects the request.

What does 415 HTTP Status Code Mean?

The 415 HTTP Status Code is returned when the server rejects the requested resource due to the server’s inability to support the requested resource’s media format. The format issue could be caused by the request’s specified Content-Type or Content-Encoding, or by directly analyzing the contents.

How to Use 415 HTTP Status Code for a Website?

To use the 415 HTTP Status Code in a website, the web developer should send a form POST HTTP request (Content-Type: application/x-www-form-text) to the controller below, which returns an HTTP 415 Unsupported Media Type response.

How to Check 415 HTTP Status Code?

To check the 415 HTTP Status Code use the web browser network tab and developer tools for every resource that the client uses.

Which HTTP Method is used with 415 HTTP Status Code?

The HTTP methods that are used with the 415 HTTP Status Codes are given below. 

  • GET HTTP Method: The GET HTTP method is used in the 415 HTTP Response Status code. The GET method is used to get a representation of a resource. Requests made with the GET method should only return data.
  • DELETE HTTP Method: The DELETE HTTP method is used in the 415 HTTP Response Status code. The DELETE method erases the specified resource from the system.
  • POST HTTP Method: The POST HTTP method is used in the 415 HTTP Response Status code. The POST method submits an entity to the provided resource, frequently resulting in a change in the state of the server or other side effects.

The related HTTP Response Headers with 415 HTTP Status Code are listed below.

  • Content-Type HTTP Header: The 415 HTTP Status Code is related with the Content-Type HTTP Header which is used to indicate the resource’s original media type (prior to any content encoding for transmission).
  • Content-Encoding HTTP Header: The 415 HTTP Status Code is related with the Content-Encoding HTTP Header which is used to reduce the size of the media. When the server receives this information, it knows which encoding the user can use.
  • Accept HTTP Header: The 415 HTTP Status Code is related to the Accept HTTP header which  indicates the content types that the client is capable of understanding, as expressed in MIME types. The server selects one of the proposals via content negotiation and notifies the client via the Content-Type response header.

What are the Browsers Compatibility of 415 HTTP Status Code?

The 415 HTTP Status Code is compatible with all browsers including Chrome, Edge, Firefox, Internet Explorer, Opera, Safari, and Webview Android. 

What are the other Similar Status Codes to 415 HTTP Status Code?

There are other similar HTTP Status Codes to the 415 HTTP Status Code. The following are listed below.

  • 414 URI Too Long HTTP Status Code: The 414 HTTP Status Code is similar to the 415 HTTP Status Code because they are both client error responses. The 414 HTTP Status Code indicates that the client’s URI request is longer than the server will interpret.
  • 416 Range Not Satisfiable HTTP Status Code: The 416 HTTP Status Code is similar to the 415 HTTP Status Code because they are both client error responses. The 416 HTTP Status Code indicates the range specified in the request’s Range header field cannot be accomplished. It is possible that the range is greater than the data size of the target URI.
  • 417 Expectation Failed HTTP Status Code: The 417 HTTP Status Code is similar to the 415 HTTP Status Code because they are both client error responses. The 417 HTTP Status Code means the server is unable to fulfill the expectation specified in the Expect request header field.
  • 418 I’m a teapot HTTP Status Code:  The 418 HTTP Status Code is similar to the 415 HTTP Status Code because they are both client error responses. The 418 HTTP Status Code indicates that the server declines to use a teapot to brew coffee.
  • Author
  • Recent Posts

Holistic SEO & Digital has been built by Koray Tuğberk GÜBÜR. Holistic SEO is the process of developing integrated digital marketing projects with every aspect including Coding, Natural Language Processing, Data Science, Page Speed, Digital Analytics, Content Marketing, Technical SEO, and Branding. Structured, Semantic Search Engine improves its ability to detect the real-world entities, today. Having a simple website is not enough anymore. To show that your brand is authoritative, trustworthy, and expert on its own niche, you need entity-based Search Engine Optimization Projects. Holistic SEO & Digital’s main focus is on improving the brand’s organic visibility and growth potential.

BNAME.RU » Код ошибки HTTP 415 Unsupported Media Type

Что означает ошибка 415 Unsupported Media Type?

Сообщение 415 об ошибке указывает, что API не может обработать тип носителя, предоставленный клиентом, как указано в заголовке запроса типа контента. Например, запрос клиента содержит данные в формате application/xml, а API готов только для обработки application/json. В этом случае клиент получит ответ 415. Например, клиент загружает изображение как image/svg + xml, но сервер требует, чтобы изображения использовали другой формат.

Понравилась статья? Поделить с друзьями:

Не пропустите эти материалы по теме:

  • Яндекс еда ошибка привязки карты
  • Код ошибки http 402
  • Код ошибки http 12152
  • Код ошибки gs10 мерседес актрос
  • Код ошибки g269

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии