Макеты страниц
где коэффициенты 
Передаточная функция замкнутой системы относительно ошибки (рис. 4.1)

Из (4.4) можно найти выражение для изображения ошибки:

Разложим передаточную функцию по ошибке 


В соответствии с (4.5) можно записать

Если передаточная функция 

то разложение в ряд 

Коэффициенты ошибок 


Если 


В данном случае 
Если 

Коэффициент 

В статических системах коэффициент 





Пусть воздействия на САУ являются постоянными величинами и равны 
1. В системе отсутствуют интегрирующие звенья. Элементы 1 и 2 системы (рис. 4.2) являются инерционными звеньями и соответственно равны


Рис. 4.2
Тогда на основании метода суперпозиции установившаяся ошибка САУ

где 

а 

В данном случае САУ является статической относительно обоих воздействий, так как 
2. Допустим, что в элемент 2 рассматриваемой системы (рис. 4.2) включено интегрирующее звено, а элемент 

Тогда составляющие 

Следовательно, САУ является астатической относительно задающего воздействия 

3. Пусть интегрирующее звено включено в элемент 

Второе звено является инерционным звеном, а передаточная функция его та же, что и в случае 1.
Рассчитаем составляющие ошибки 

Поскольку и 


Нужно отметить, что метод коэффициентов ошибок применяется при сравнительно медленно меняющихся воздействиях.
Пример 4.1. Для системы (рис. 4.1) определить значение устано вившейся ошибки системы. Передаточная функция системы в разомкнутом состоянии

где 
Выходной сигнал меняется по закону 

Коэффициенты ошибок 


Коэффициенты 

Определим первую и вторую производные входного воздействия

Тогда 
Показатели качества сау
Количественные оценки
качества, так называемые прямые показатели
качества, определяются по кривой
переходного процесса (рис.16).
Рис.16. Переходная
функция и показатели качества
Используются следующие
прямые показатели качества:
-
величина
перерегулирования
,
;
характеризует
максимальное отклонение регулируемой
величины от ее установившегося значения,
которое может быть определено в
соответствии с теоремой о конечном
значении оригинала
;
-
время
переходного процесса или время
регулирования tp
– наименьшее значение времени, после
которого имеет место неравенство
,
где
— заданная величина, обычно лежащая в
пределах =0,02÷0,05;
3)
статическая ошибка сm
–
величина отклонения установившегося
значения регулируемой величины x()
от требуемого значения
N
или
,
гдеE(p)– изображение ошибки;
4)
время регулирования tр
– промежуток времени, по истечении
которого регулируемая величина первый
раз достигает установившегося значения.
Для определения
качества системы могут использоваться
и другие показатели, соответствующие
решаемой задаче, например, число колебаний
регулируемой величины за время
регулирования, частота и период колебаний
и т.д.
Во всех случаях
необходимо построить переходную функцию.
Коэффициенты ошибок
Точность САУ в
установившемся режиме, при относительно
медленно изменяющихся воздействиях,
может быть оценена с помощью коэффициентов
ошибок. Изображение ошибки определяется
выражением
,
где
—
передаточная функция по ошибке.
Разложим передаточную
функцию системы по ошибке в степенной
ряд в окрестности точки p=0.
Отметим, что приp0,tи именно
поэтому мы говорим о точности в
установившемся режиме.
Обозначим:
и получим
,
(8)
.
Учитывая, что оператор
p, умноженный на
изображение самой величины, является
символом дифференцирования, можно для
оригиналов записать
.
(9)
Выражение (9) определяет
зависимость ошибки регулирования от
различных составляющих входного
воздействия, коэффициенты Kiполучили название коэффициентов ошибок:
-
K0— коэффициент ошибки по положению;
-
K1—
коэффициент ошибки по скорости; -
K2– коэффициент ошибки по ускорению и
т.д.
Из (8) следует, что

Численные значения
коэффициентов ошибок определяются из
этого выражения при p0.

Очевидно, что К0=Ф(0).
Входное воздействие
можно представить в виде степенного
ряда
,
где g0– постоянная величина, характеризующая
начальное значение, g1=const – скорость
изменения входного воздействия, g2=const – ускорение и т.д.
Тогда
.
Пусть передаточная
функция разомкнутой системы имеет вид
,
где - порядок астатизма системы. Для
передаточной функции замкнутой системы
по ошибке получим
.
Изображение ошибки
запишется в виде
.
Отсюда следует, что
если порядок астатизма больше порядка
старшей производной воздействия, т.е.
>m, то ошибка в
установившемся режиме будет равна нулю.
Если=m, то установившаяся
ошибка будет равна постоянной величине,
называемой статической ошибкой. И если<m, то при tи. В отношении
коэффициентов ошибок последнее выражение
позволяет сделать следующие выводы.
1). Если система
статическая, т.е.=0,
то существуют все составляющие ошибки
и все коэффициенты ошибок не равны нулю,
т.к.К0 = Ф(0)
0.
2).Система с астатизмом
1-го порядка,
=1, не имеет ошибки по положению иК0=0.
3).Система с астатизмом
2-го порядка,
=2, не имеет ошибок по положению и по
скорости иК0 =0,К1=0.
Этот список можно
продолжить. Таким образом, повышение
порядка астатизма повышает точность
системы в установившемся режиме. Но
повышение порядка астатизма снижает
запасы устойчивости, т.к. введение
интегрирующих звеньев увеличивает
фазовое запаздывание (снижает частоту
). Поэтому на
практике порядок астатизма выше второго
не применяют, а чаще всего ограничиваются
астатизмом первого порядка, используя
для повышения точности другие способы.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Оценка качества регулирования в установившемся режиме (коэффициенты ошибок)
- Регулярная оценка качества регулирования (коэффициент ошибок) Рассмотрим показатель качества, который характеризует обязательный компонент системы ошибок ev (/). Постоянная ошибка управления при поступлении сигнала на вход системы (рисунок 4.1) Система ev (f) = xB (t) -g (t), где xv (f) — вынужденная составляющая (4.1) управляющей переменной. Если g (t) дифференцируемо на всем интервале 0 °, Как выразить систему e „(/) как серию 4 (0 = Сов (0 + CtdgU) / дт 4 — Ctd2g (т) fdt2 + ••• + + cmd * g (t) ldtm, (4,8) ми Где коэффициенты C0, Clf C2, … обычно называют коэффициентами ошибки. Уравнение (4.8) получается следующим образом.
Закрытая система передачи функции для ошибок (рисунок 4.1) (S) -1 / | 1 + W (секунды) | = Ea (s) / G (s). (4.9) Из (4.9) вы можете найти уравнение для изображения ошибки Eh (s). Eb (s) = G (s) / | 1+ W (s) |. (4.10) Увеличивая силу s вблизи точки s = 0, передаточная функция неправильно расширяется с помощью номера gt (s). Большое время (t oo), то есть значение ошибки установившегося состояния для данного действия управления. Согласно (4.10), вы можете написать K (s) = [Cv + C, s + i- C2 $ 2 + + •• + ± Cms-] G (s). (4.11) Когда передаточная функция tt + … + vy.15 + vy
Затем вы можете расширить ряд WR (5), разделив числитель на знаменатель и расположив полиномиальные члены в порядке возрастания.
Людмила Фирмаль
Если вы передадите изображение оригиналу в (4.11), вы можете получить выражение (4.8) для ev (/). Коэффициенты ошибок C0, Clt C, … решено! Формула разложения для функции ряда Тейлора IVgt (s) C0 = [WGI (s) Uo, C, — _ rwjjjii Д.С. см = s «o dsm (4.12) с = 0 Если g (t) = 1 (/), все производные dg (t)! Dt-d2g (> t) ‘dt2 = dmg (t)! Dtm = 0 C-W (0) и C __— C dmg (0-0 Кроме того, C0-U ^ Kt (0) — это значение стационарной ошибки замкнутой системы. Если g (t) = ty, dg (t) / dt = l, d2g (t)! Dt2 = •. • = dmg (t) ldtm = 0; -r ^ w = Коэффициент C0 = (0), C, = £ —j- с = 0 = Cmdmg (t) idtm = 0 и т. Д. Коэффициент C называется коэффициентом статической ошибки или ошибки положения. Коэффициент погрешности Ct-Speed; C2 — Коэффициент погрешности от ускорения.
В статических системах коэффициент C0 не равен нулю. С0 = О, С, Ф0 для систем со статистикой первого порядка, С0 = С, = 0, С2 = 0 для систем со статистикой второго порядка. По мере увеличения количества интегрированных ссылок в системе некоторые значения коэффициента ошибок становятся равными нулю, но в то же время обеспечение стабильности системы становится более сложным. Если количество ненулевых производных мастер-действия ограничено, количество членов в ряду (4.8) ограничено. Метод коэффициента ошибок используется для эффектов, которые изменяются относительно медленно. Этот метод был описан выше. Для управляющего воздействия g (t) его также можно применять для оценки точности системы при наличии возмущения / (/).
- Например, система 4.1 (рисунок 4.1), определить устойчивое значение системной ошибки. Передаточная функция открытой системы P (s) — * / | s (! -F-s7 ) (1 -f s72) J, Где k = 10 секунд «1. G, = 0,2 секунды, Tg-0,02 секунды. Выходной сигнал изменяется по закону g (l) = • 5 -f 20 / -f 20/2. Найти функцию передачи закрытой системы, связанную с ошибкой w wimgm 1 Ml + srt) (l + s T%) Wgt (s) = E (s) / G (s) = s (I + sr |) (I + sri) + fc & TXT% + s2 (7 4-T2) + s «Она (SJ- EW eT ^ + sP ^ i + r ^ + e + ft
Коэффициенты ошибок Ci и Cg (Co = 0, поскольку система является статической) определяются степенью s функции Wgf (s) (4.12) или расширением n путем деления числителя на знаменатель. (0 = Cxs 4-C + ••• = s / k + s2 (T, + Tg-I / k) / k + Поскольку функция g (t) имеет только две производные, коэффициенты C3, … не имеют смысла. Определите первую и вторую производные входного действия g (t). 2 (0 = 20 4-40 /; £ (0 = 40. затем «в (0 = ev (0 = 2,48 + 4 /.
Смотрите также:
Решение задач по теории автоматического управления
Исследование качества сау
Сформулируем
определения терминов:
-
Качество
САУ
– комплекс свойств САУ, оцениваемых
многовекторным критерием соответствия
процесса управления в установившемся
и переходном режимах множеству требований
к объекту. -
Показатель
– величина, характеризующая существенное
свойство объекта, по которому судят о
предпочтительности объекта или процесса
в нем. -
Анализ
САУ –
установление (выявление) влияния
структуры системы и ее параметров,
начальных условий и входных воздействий
на показатели качества процесса
управления. -
Ошибка
обработки системой входного воздействия
– (мера динамической точности системы;
количественный показатель качества
регулирования) функция, образованная
разностью между фактическим процессом
на выходе исследуемой системы и требуемым
(желаемым, эталонным) видом выходной
функции.
Требования,
предъявляемые к системам автоматического
управления:
-
Выполнять
главную функцию – автоматическое
управление объектом; -
Устойчивость
работы САУ. -
Система
должна быть надежной и живучей. -
Безопасна
для обсуживающего персонала. -
Экономична.
-
Соответствовать
заданным показателям качества в статике
(в установившемся режиме работы) и
динамике (в переходных режимах).
Обычно
анализ работы САУ выполняется при
типовых воздействиях, близким к реальным
управляющим и возмущающим воздействиям
в нормальных или наиболее трудных
режимах работы.
Необходимое
условие функционирования – устойчивость
САУ.
Достаточное
условие рационального использования
системы – выполнение требований по
точности, быстродействию, плавности.
Анализ качества сау в статике
Одно
из основных требований, которым должна
удовлетворять САУ – обеспечение
необходимой точности воспроизведения
входного воздействия в установившемся
режиме. Ошибка отработки системой
входного воздействия зависит от структуры
системы, параметров звеньев, типа и
производных входного воздействия.
Большинство
известных методов анализа качества САУ
в статике ориентировано на анализ
рассогласования (называемого ошибкой)
в системе в установившемся режиме.
Рассмотрим такую постановку задачи.
Пусть
структурная схема исходной САУ приведена
к типовой (рис.1).
При
исследовании точности системы управления
в установившемся режиме целесообразно
располагать выражениями для передаточных
функций ошибки замкнутой системы по
управляющему и возмущающему воздействиям.
На
основании принципа суперпозиции с
помощью передаточных функций замкнутой
системы определим изображение сигнала
рассогласования называемое в технической
литературе сигналом ошибки:

u(p)
– рассогласование
по каналу управления,
f(p)
– рассогласование
по каналу возмущения,
Фu(p)
– передаточная функция ошибки по каналу
управления,
Фf(p)
– передаточная функция ошибки по каналу
возмущения.
Для
оценки точности работы системы при
ступенчатом входном воздействии
определяется установившаяся ошибка,
которая может быть получена из последнего
выражения с помощью теоремы о конечном
значении функции:
Если
управляющее воздействие u(t)
имеет произвольную форму, но достаточно
плавную, в дали от начальной точки
процесса в том смысле, что через некоторое
время существенное значение имеет
только конечное число m
производных, то отклонение системы
можно найти с помощью коэффициентов
ошибок.
Передаточную
функцию Фu(p)
представим
в виде ряда
сходящегося
при малых p,
что
соответствует установившемуся режиму
работы. Коэффициенты этого ряда называются
коэффициентами ошибок и определяются
с помощью выражений
или
непосредственным делением полинома
числителя на полином знаменателя
передаточной функции Фu(p).
Коэффициенты
C0, C1 и C2 называются соответственно
коэффициентами позиционной ошибки,
скоростной ошибки и ошибки от ускорения.
Переходя
к оригиналу, выразим квазиустановившуюся
ошибку через коэффициенты ошибок,
управляющее воздействие и его производные:
Аналогично
вводится понятие коэффициентов ошибок
по возмущающему воздействию.
Если
структурная схема непрерывной САУ
сведена к виду (рис.2).
Ошибка
на выходе системы во временной области
определяется выражением
где
yэт(t)
– эталонная (безошибочная) входная
функция.
Отобразим
последнее выражение в пространство
преобразований Лапласа и выполним ряд
операций подстановок и эквивалентных
преобразований:
Во
временных методах анализа передаточную
функцию Фu(p)
разлагают
в ряд Маклорена в сегменте [0,],
где — комплексное число с малыми
параметрами,
Ряд
сходится и сумма его равна передаточной
функции системы по ошибке, если система
устойчива. Во временном пространстве
это соответствует участку импульсной
переходной функции по ошибке при
достаточно больших значениях t
(установившийся режим работы).
Коэффициенты
ряда называют коэффициентами ошибок:

коэффициент позиционной
ошибки;

коэффициент скоростной
ошибки;

коэффициент ошибки
ускорения
и т.д.
Коэффициенты
ошибок можно определить непосредственным
делением полинома числителя на полином
знаменателя передаточной функции
Фu(p).
Тогда

Типовые
входные воздействия устанавливаются
из последовательности
1.
Статистическая система (=0)
Для
упрощения анализа и унификации расчетов
типовую структурную схему рис.1 преобразуют
к схеме с единичной отрицательной
обратной связью и проводят анализ
единичного контура в эквивалентной
схеме (рис.3).
Сделаем
анализ статической ошибки по каналу
управления. В статической системе

разомкнутой системы; коэффициенты сi
принимают некоторые конечные численные
значения
Если
выходное воздействие – ступенчатая
функция u01(t),
то при f=0
так как
ci
– постоянные
величины, а производные входного
воздействия при t>0
равны нулю (рис.4).
Величина
ошибки пропорциональна величине входного
воздействия u0
и
обратно пропорциональна передаточному
коэффициенту разомкнутой системы k.
Задаваясь
уст.,
можем найти требуемую величину
k.
Если
для повышения запаса устойчивости
следует снижать передаточный коэффициент,
то для повышения точности в статике
требуется увеличение передаточного
коэффициента.
Пусть
входное воздействие есть линейная
функция времени, тогда (рис.5)
При
параболическом воздействие (рис.6)

Статическая
ошибка по каналу возмущения определяется
выражением
— принято
исследовать.
В ряде
случаев кроме ошибок системы по каналам
управления и возмущения необходимо
учитывать и ошибку гэ
чувствительного элемента, который не
является идеальным. Таким образом,
результирующая статическая ошибка
системы управления
Статизм
системы

на выходе замкнутой системы от действия
возмущения заданной величины меньше,
чем отклонение выходной функции в
системе разомкнутой.
Из
приведенного анализа следует, что
статические системы целесообразно
применять, если управляющее воздействие
является постоянной величиной. Такой
режим работы характерен для систем
стабилизации.
2.
Астатическая система 1го
порядка (=1)
Пусть
структурная схема САУ имеет вид,
приведенный на рис.7. Приведем анализ
САУ по каналу управления, если
При
подаче на вход системы единичного
ступенчатого воздействия 1(t)
(рис.8)
статическая
ошибка равна нулю:
а
В режиме
с управляющим воздействием, изменяющимся
с постоянной скоростью, u(t)=at
Д=kp
– добротность по скорости [с-1]
при линейно-возрастающем входном сигнале
есть показатель качества системы.
В этом
случае с0,
с1=1/k,
… .
Если
входное воздействие изменяется по
параболическому закону, то (рис.9)
Если
система с неединичной обратной связью,
то анализ системы будет по изложенной
выше методике, но в общем случае
коэффициенты с0,
с1,
с2,
… могут быть иные, чем при единичной
отрицательной обратной связи.
В общем
случае элемент обратной связи инерционен.
Здесь
Оценка
точности астатических систем 1го
порядка производится при линейно-нарастающих
входных воздействиях. Статическая
ошибка в этом режиме постоянна. Если
входное воздействие ступенчатое, то
статическая ошибка равна нулю.
В таких
режимах работают программные и следящие
системы.
3.
Астатическая система 2го
порядка (=2)
Рассмотрим
установившийся
режим работы в астатических системах
второго порядка (рис. 7)
при изменении управляющего воздействия
с постоянным ускорением u(t)=bt2/2.
В этом
случае (рис.11)
Д=kp
– [1/c2]
добротность
по ускорению – оценка точности работы
системы с астатизмом 2го
порядка.
Здесь

при
при
при
Выбрав
kp
большим, получим малую статистическую
ошибку.
Для
структурной схемы рис.6 по каналу
управления для различных порядков
астатических систем приведены величиныci
в
таблице 1.
Таблица
1.
|
Порядок
Рассмотрим
Для |
Величины управления |
||
|
с0 |
c1 |
c2 |
|
|
=0 |
|
>0 |
>0 |
|
=1 |
0 |
|
>0 |
|
=2 |
0 |
0 |
|
Точность
системы в этом режиме можно оценить по
амплитуде ошибки, которая находится из
выражения
Путем
подстановки pjk
и
определения модуля полученного выражения:

Пример.
Передаточная функция прямого канала
системы с единичной ОС имеет вид
где
T1>1>T2,
kp=20,
тогда
20lgkp=201,3=26дБ,
Построить
ЛЧХ системы для 1,2,3.
Соседние файлы в папке лекции
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
На этой странице я собрала теорию и практику, готовые задачи и подробные решения по предмету теория автоматического управления, чтобы вы смогли освежить знания.
Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу!
ТАУ
Теория автоматического управления (ТАУ) является одной из немногих общепрофессиональных технических дисциплин, входящих под тем или иным названием во все программы инженерного образования. Основой ТАУ являются различные по идеям и методам исследования разделы высшей математики и физики, такие как дифференциальное и интегральное исчисление, теория функций комплексного переменного, теория матриц, теория оптимальных процессов, математическая логика, теория вероятности и случайные процессы, механика, электричество и магнетизм и др.
Математическое описание систем управления. Уравнения и передаточные функции
Система или звено с одним выходом 



или

где 


Дифференциальный оператор 




Степень полинома знаменателя передаточной функции называют порядком, а разность между ее степенями знаменателя и числителя — относительным порядком или относительной степенью передаточной функции и соответствующей ей системы.
Нулями и полюсами передаточной функции

называют нули ее числителя и знаменателя соответственно, т. е. корни уравнений 


Система (1.1) определяется двумя передаточными функциями: передаточной функцией

относительно входа 

относительно входа 





С помощью передаточной функции уравнение рассматриваемой системы управления можно записать в виде

Имеющее наименьший порядок отношение изображений Лапласа выходной и входной переменных, вычисленных при нулевых начальных условиях, называется передаточной функцией в изображениях Лапласа. В соответствии с определением передаточная функция в изображениях Лапласа не может иметь равные между собой нули и полюса, так как в этом случае ее порядок может быть понижен путем сокращения числителя и знаменателя на общий множитель.
Передаточная функция системы управления в изображениях Лапласа 


Если передаточная функция 

Возможно эта страница вам будет полезна:
Задача №1.1.
Определить передаточные функции звеньев, описываемых уравнениями:
Решение:
В символической форме эти уравнения записываются в виде
а их передаточные функции в операторной форме соответственно равны

Передаточные функции в изображениях Лапласа имеют вид

Как видим, передаточные функции в изображениях Лапласа рассматриваемых звеньев совпадают, хотя они описываются разными дифференциальными уравнениями и общие решения однородных уравнений, описывающие свободные движения систем, отличаются между собой.
Временные функции
Переходной функцией системы (звена) называют функцию, описывающую реакцию системы на единичное ступенчатое воздействие при нулевых начальных условиях. Переходную функцию обозначают 


Импульсной переходной или весовой функцией (функцией веса) называют функцию, описывающую реакцию системы (звена) на единичное импульсное воздействие при нулевых начальных условиях. Весовую функцию обозначают 
Передаточная функция в изображениях Лапласа есть преобразование Лапласа от весовой функции:

Весовая функция равна производной от переходной функции:

Если изображение временной функции 







если нули 




Задача №1.2.
Определить переходную и весовую функции колебательного звена, т. е. звена с передаточной функцией

Решение:
Дифференциальное уравнение имеет вид

Для определения переходной функции нужно решить это уравнение при входном воздействии 

Характеристическое уравнение имеет вид

и его корнями являются

или

Положив

общее решение однородного дифференциального уравнения можно записать в виде

Частное решение неоднородного уравнения 

Производная от этого решения

Начальные условия принимают вид

Отсюда

Поэтому для переходной и весовой функций имеем

или, после элементарных преобразований

где

Задача №1.3.
Определить переходную и весовую функции звена с передаточной функцией

Решение:
Передаточная функция 





Так как 

В этом случае полюс 





Так как

для слагаемого, соответствующего полюсу 

Таким образом, переходная функция имеет вид

Частотные функции и характеристики
Функцию 




Если

Ha комплексной плоскости частотная передаточная функция 








АФЧХ, получаемую при изменении частоты от —





Частотную передаточную функцию 



Кроме перечисленных частотных характеристик имеются логарифмические частотные характеристики (ЛЧХ): логарифмические амплитудные частотные характеристики (ЛАЧX) и логарифмические фазовые частотные характеристики (ЛФЧХ).
Функцию

называют логарифмической амплитудной частотной функцией, а график зависимости функции 

При построении ЛАЧХ по оси абсцисс откладывают значение частоты в логарифмическом масштабе и при этом на отметке, соответствующей значению 


Логарифмической фазовой частотной характеристикой (ЛФЧХ) называют график зависимости функции 



В ЛЧХ единицей функции 

Определенные трудности представляет вычисление фазовой частотной функции. Если эта функция по модулю не превышает 

В общем случае нужно разложить числитель и знаменатель передаточной функции на элементарные множители и определять фазовую частотную функцию по правилу вычисления аргумента произведения и частного комплексных чисел.
Правило вычисления модуля и аргумента. При вычислении амплитудной и фазовой частотной функций полезно следующее правило вычисления модуля и аргумента произведения и частного комплексных чисел (функций).
1) Модуль произведения 

а аргумент — сумме аргументов сомножителей:

2) Модуль частного комплексных чисел (функций) 

а аргумент — разности аргументов числителя и знаменателя:

Элементарные звенья и их характеристики. Так как произвольный полином можно разложить на простые множители, то передаточную функцию системы (звена)

всегда можно представить в виде произведения простых множителей и дробей вида

Здесь 


Звенья, передаточные функции которых имеют вид простых множителей или дробей, называют элементарными звеньями. Их также называют типовыми.
Системы и звенья и их передаточные функции делятся на минимально-фазовые и неминимально-фазовые. Передаточная функция 


Система и звено называются минимально-фазовыми, если их передаточные функции являются минимально-фазовыми, и неминимально-фазовыми, если их передаточные функции являются неминимально-фазовыми.
Передаточные функции системы, не являющиеся ни минимально-фазовыми и ни неминимально-фазовыми, иногда называют нейтральными или маргинальными. Иначе говоря, передаточная функция называется маргинальной, если она имеет нуль или полюс на мнимой оси, но не имеет их в правой полуплоскости.
Тип звена определяется видом его передаточной функции. При этом если передаточные функции звеньев отличаются только на постоянный множитель, то их относят к одному и тому же типу. Поэтому при определении типа элементарных звеньев будем исходить из передаточных функций, получаемых из (1.4) умножением на константу 
Звено с передаточной функцией 






Фазовые частотные функции минимально-фазовых и нейтральных звеньев с передаточными функциями, представляющими элементарный множитель первого порядка, по модулю не превышают 





Физический смысл частотных характеристик. При гармоническом входном воздействии в устойчивых системах после окончания переходного процесса выходная переменная также изменяется по гармоническому закону с той же частотой, но с другими амплитудой и фазой; амплитуда равна амплитуде входного сигнала, умноженной на модуль частотной передаточной функции, а сдвиг фазы — ее аргументу. Поэтому если система с передаточной функцией 

после окончания переходного процесса выходной сигнал

Здесь 



Задача №1.4.
На вход системы подается сигнал 

Решение:
В данном случае частотная передаточная функция имеет вид

и

Поэтому

и соответственно

Задача №1.15.
На вход системы подается сигнал 
Асимптотические логарифмические амплитудные частотные характеристики. Логарифмические амплитудные частотные характеристики (ЛАЧХ) пропорционального, дифференцирующего и интегрирующего звеньев являются прямыми и их легко построить. Построение ЛАЧХ других элементарных звеньев требует трудоемких вычислений. Поэтому на практике часто ограничиваются построением приближенных асимптотических ЛАЧХ.
При построении асимптотической ЛАЧХ апериодического звена в выражении

при 



При построении асимптотической ЛАЧХ колебательного звена в выражении

при 



Аналогично поступают при построении асимптотических ЛАЧХ форсирующих звеньев. Частоты, на которых асимптотические ЛАЧХ претерпевают излом, называются сопрягающими частотами.
Для построения ЛАЧХ и ЛФЧХ звена с произвольной дробно-рациональной передаточной функцией 


или в виде

где 

Из (1.5) имеем:

Из (1.7) следует, что для построения ЛАЧХ произвольного звена достаточно построить ЛАЧХ элементарных звеньев, на которые оно разлагается, а затем их геометрически сложить. Однако для построения асимптотических ЛАЧХ можно использовать несколько иное, более простое правило. Проиллюстрируем это сначала на частном примере.
Возможно эта страница вам будет полезна:
Задача №1.5.
Построить асимптотическую ЛАЧХ для звена с передаточной функцией

Решение:
Преобразуем передаточную функцию к виду

Логарифмическая амплитудная частотная функция

Вычислим сопрягающие частоты и пронумеруем их в порядке возрастания:

Здесь 

Напомним, что при построении асимптотических ЛАЧХ при частотах, меньших сопрягающей частоты, под корнем оставляют только единицу (остальными членами пренебрегают), при частотах, больших сопрягающей частоты, — член с наивысшей степенью 


Это уравнение прямой, которая проходит через точку с координатами 


При 

Это уравнение второй асимптоты. Ее наклон по отношению к первой асимптоте изменяется на —20 дб/дек и обусловливается апериодическим звеном, т. е. множителем первого порядка в знаменателе рассматриваемой передаточной функции. Вторую асимптоту проводят от конца первой асимптоты до второй сопрягающей частоты под наклоном -40 дб/дек.
При


Это уравнение третьей асимптоты. Ее наклон по отношению ко второй асимптоте изменяется на 20 дб/дек и обусловливается форсирующим звеном, т. е. множителем первого порядка в числителе. Третью асимп-

тоту проводят от конца второй асимптоты до третьей сопрягающей частоты под наклоном —20 дб/дек. При


Это уравнение последней, четвертой, асимптоты. Ее наклон изменяется по отношению к третьей асимптоте на -40 дб/дек и обусловливается множителем второго порядка в знаменателе.
Правило построения асимптотических ЛАЧХ
1) Пользуясь представлением (1.6), вычислить 20 

2) На оси абсцисс отметить сопрягающие частоты, а на координатной плоскости — точку (1,20


3) Построить вторую асимптоту, которая начинается с конца первой асимптоты и проводится до второй сопрягающей частоты Его наклон изменяется на ±20 дБ/дек или ±40 дБ/дек в зависимости от того, обусловливается ли 
4) Построить остальные асимптоты, которые строятся аналогично второй асимптоте: 



Последняя асимптота представляет собой прямую, которая начинается в конце асимптоты, соответствующей последней сопрягающей частоте, и уходит в бесконечность.
Возможно эта страница вам будет полезна:
Задача №1.6.
Построить асимптотическую ЛАЧХ звена с передаточной функцией

Решение:
Преобразуем передаточную функцию к виду

1) 


Проводим через точку с координатами (1, 20) первую асимптоту под наклоном 0 дБ/дек (т. е. параллельно оси абсцисс) до первой сопрягающей частоты 

Так как первая сопрягающая частота 


Сопрягающая частота 


Сопрягающая частота 

2) 


Структурные схемы
Структурной схемой системы управления называют графическое представление ее математической модели в виде соединений звеньев, изображаемых в виде прямоугольников или круга (для сумматора), с указанием входных и выходных переменных.
Обычно внутри прямоугольника указывается условное обозначение оператора изображаемого им звена, а сам оператор в виде передаточной функции или дифференциального уравнения задается вне структурной схемы.
Преобразование структурных схем.
Последовательное соединение. Так называется соединение, при котором выход предыдущего звена является входом последующего (рис. 1.4, а). При последовательном соединении передаточные функции отдельных звеньев перемножаются и при преобразовании структурных схем цепочку из последовательно соединенных звеньев можно заме-

нить одним звеном с передаточной функцией 
Параллельное соединение. Так называется соединение, при котором на вход всех звеньев подается одно и то.же воздействие, а их выходные переменные складываются (рис. 1.5, а). При параллельном

соединении звеньев передаточные функции складываются и при преобразовании их можно заменить одним звеном с передаточной функцией

Если выход какого-либо звена поступает на сумматор с отрицательным знаком, то передаточная функция этого звена складывается с отрицательным знаком, т. е. вычитается.
Обратное соединение или звено, охваченное обратной связью. Так называется соединение двух звеньев, при котором выход звена прямой цепи подается на вход звена обратной связи, выход которого складывается с входом первого звена (рис. 1.6, а). Если сигнал обратной

связи (выход звена обратной связи) вычитается (т. е. складывается с отрицательным знаком), то обратная связь называется отрицательной; в противном случае — положительной. Когда передаточная функция звена обратной связи равна единице 
При размыкании обратной связи перед сумматором получаем последовательное соединение, передаточная функция которого равна

Эта передаточная функция называется передаточной функцией разомкнутой цепи.
Передаточную функцию

в которой учитывается передаточная функция сумматора по входу обратной связи, будем называть передаточной функцией контура. Здесь 
Передаточная функция при обратном соединении равна 
Перенос сумматора. При переносе сумматора по ходу сигнала добавляется звено с передаточной функцией, равной передаточной функции звена, через которое переносится сумматор (рис. 1.7, а).

При переносе сумматора против хода сигнала добавляется звено с передаточной функцией, равной обратной передаточной функции звена, через которое переносится сумматор (рис. 1.7, б).
При переносе сумматора участок цепи, через который он переносится, становится неэквивалентным. Поэтому при преобразовании структурных схем нельзя переносить сумматор через точку съема сигнала.
Перенос узла. При переносе узла по ходу сигнала добавляется звено с передаточной функцией, равной обратной передаточной функции звена, через которое переносится узел (рис. 1.8, а).

При переносе узла против хода сигнала добавляется звено с передаточной функцией, равной передаточной функции звена, через которое переносится узел (рис. 1.8, б).
Перестановка сумматоров. Сумматоры можно переставлять местами и объединять. Перестановка двух сумматоров соответствует переносу одного сумматора через другой и подчиняется правилу переноса сумматора через звено.
Сумматор 1 (рис. 1.9) переносится через сумматор 2 по направлению распространения сигнала, а сумматор 2 через сумматор 1 против направления распространения сигнала.

Но так как передаточная функция сумматора по каждому входу равна 1 или -1, то и передаточная функция звена, которое добавляется при переносе сумматора, независимо от направления переноса равна 1 или -1. Поэтому если сумматор переносится через другой сумматор вдоль входа со знаком плюс, добавляется звено с передаточной функцией 1, т. е. в действительности ничего не добавляется (рис. 1.9, а); если сумматор переносится вдоль входа со знаком минус, то добавляется звено с передаточной функцией -1, т.е. знак по входу, куда должно быть добавлено звено, меняется на обратный (рис. 1.9, б).
Перестановка узлов. Узлы можно переставлять местами и объединять.
Вычисление передаточной функции одноконтурной системы.
Замкнутая система называется одноконтурной, если при ее размыкании в какой-либо точке замкнутого контура получается система без параллельных и обратных соединений (рис. 1.10).

Цепь по ходу сигнала от точки приложения входной переменной до точки съема выходной переменной называется прямой цепью. Передаточная функция прямой цепи 

Правило вычисления передаточной функции замкнутой одноконтурной системы: передаточная функция одноконтурной системы относительно внешнего воздействия (входа) 


Возможно эта страница вам будет полезна:
Задача №1.7.
Определить передаточные функции системы (рис. 1.10) 





Решение:
Прямая цепь системы (см. рис. 1.10) относительно входа 




Прямая цепь относительно входа 




Искомые передаточные функции имеют вид

Вычисление передаточной функции многоконтурной системы.
Замкнутая система называется многоконтурной, если при ее размыкании в какой-либо точке замкнутого контура получается система, содержащая параллельное и/или обратное соединение.
Многоконтурная система не имеет перекрестных связей, если любые два контура, образованные параллельными или обратными соединениями, не имеют общих участков (рис. 1.11, а) или, если какие-либо два контура имеют общий участок, то один из них вложен внутрь другого (рис. 1.11, б).
Многоконтурная система имеет перекрестные связи, если она содержит два контура, которые имеют общий участок, и при этом ни один из них не вложен внутрь другого (рис. 1.11, в).
Порядок вычисления передаточной функции многоконтурной системы следующий:
1) путем переноса узлов и сумматоров нужно освободиться от перекрестных связей;
2) используя правила преобразования параллельных и обратных соединений, нужно преобразовать многоконтурную систему в одноконтурную;
3) по правилу вычисления передаточной функции одноконтурной системы определить искомую передаточную функцию.
При преобразовании структурной схемы нужно позаботится о том, чтобы не исчезли точки съема переменных, относительно которых ищутся передаточные функции, или чтобы эти точки не оказались на неэквивалентном участке (т. е. не следует переносить сумматор через эти точки).
Задача №1.8.
Определить передаточные функции 

Решение:
Сначала освободимся от перекрестных связей. Для этого перенесем сумматор 3 против хода сигнала через звено 

матор 2. То же самое проделаем с сумматором 4 (рис. 1.12, б). Далее, заменив параллельное соединение звеном с передаточной функцией

и обратное соединение звеном с передаточной функцией

получим одноконтурную систему (рис. 1.12, в). Из последней схемы по правилу вычисления передаточной функции одноконтурной системы находим

При вычислении передаточных функций многоконтурных систем с перекрестными связями во многих случаях целесообразно, а иногда

и необходимо сначала предварительно упростить схему, используя правила преобразования параллельных и обратных соединений, затем освободиться от перекрестных связей.
Граф системы управления
Граф системы управления состоит из дуг и вершин. Дуга соответствует звену и на схеме изображается отрезком линии со стрелкой, указывающей направление распространения сигнала. Дуга начинается и кончается в вершине.
Вершина на схеме изображается кружком и определяет переменную. Если к вершине подходит одна дуга, то она определяет выходную величину дуги (рис. 1.17, а), если же в вершину входят несколько дуг, то она соответствует сумме выходных переменных этих дуг (рис. 1.17, б).

Начальная вершина дуги определяет ее входную переменную (рис. 1.17, в). Вершина графа, имеющая только выходящие из нее дуги, определяет внешнее воздействие и называется входной вершиной графа.
Последовательность дуг 





Ормаршрут, в котором все дуги разные, называется путем от начальной вершины 




Два контура называются несоприкасающимися, если они не имеют общих вершин. Три, четыре и т.д. контура называются несоприкасающимися, если любая пара из этих контуров является несоприкасающейся.
Граф системы управления можно построить по структурной схеме. Для этого нужно произвести следующее (рис. 1.18):
1) сумматор с выходной переменной 

2) звено с передаточной функцией 


3) каждой переменной, в том числе переменной, соответствующей внешнему воздействию, сопоставить свою вершину.

Формула Мейсона. Определителем графа (подграфа) называется передаточная функция 

Здесь в первой сумме 








Подграфом 

Передаточная функция системы управления относительно входа 


где 







Задача №1.9.
Построить граф и по теореме Мейсона определить передаточную функцию 
Решение:
Граф системы управления представлен на рис. 1.19, б. От вершины 


Подграф 1-го пути состоит из вершин 






Граф системы управления имеет четыре простых контура. Их передаточные функции имеют вид

Несоприкасающихся пар контуров нет. Поэтому определитель графа имеет вид

Для искомой передаточной функции получаем

Математическое описание некоторых технических устройств
В общем случае функциональная схема системы автоматического управления имеет вид, представленный на рис. 2.1, где приняты следующие обозначения: УУ — управляющее устройство, включающее

в себя ЗУ — задающее устройство, вырабатывающее задающий сигнал 

УПУ — усилительно-преобразовательное устройство, включающее в себя помимо усилителя и преобразователь или корректирующее устройство, которое на основе сигнала ошибки 




В данной главе рассматриваются задачи, связанные с математическим описанием (дифференциальными уравнениями и передаточными функциями) некоторых технических устройств, используемых в системах автоматического управления (САУ) в качестве упомянутых выше элементов.
Чувствительные элементы — датчики
Датчики линейных и угловых перемещений. В САУ для измерения линейных и угловых перемещений используются линейные и вращающиеся потенциометрические датчики (ПД). Для измерения угловых перемещений используются вращающиеся трансформаторы (ВТ) и сельсины (С). На этих элементах выполняют также и сравнивающие устройства (СУ). Принцип действия этих устройств, их схемы и основные характеристики рассматриваются в довольно обширной литературе [1, 2, 5-8, 10]. Упомянутые выше потенциометрические датчики, вращающиеся трансформаторы и сельсины при исследовании динамики считаются безынерционными звеньями с передаточной функцией

где 
Для потенциометрических датчиков и вращающихся трансформаторов коэффициент 

Так, например, передаточная функция ПД типа ПП

передаточная функция ВТ типа ВТ-5

передаточная функция сельсина типа СГСМ-1

Для измерения угловой скорости используют тахогенераторы (ТГ) постоянного и переменного тока. Строго говоря, по динамическим свойствам их можно отнести к апериодическому звену второго порядка с передаточной функцией

где 








Например, передаточная функция ТГ типа ТП-75

а для ТГ типа ДГ-3ТА

Основные характеристики некоторых типов ТГ приведены в [2, 10].
Датчики температуры. Для измерения температуры в системах автоматического управления используются электротепловые датчики: термопары (ТП) и термосопротивления (ТС) [5, 6, 8, 10]. Датчики этого типа с точки зрения динамики являются апериодическим (инерционным) звеном первого порядка с передаточной функцией

где 

Усилители
В САУ используются все известные типы усилителей: электрические, гидравлические и пневматические. В качестве электрических используются электронные (ЭУ) (полупроводниковые, тиристорные), магнитные (МУ) и электромашинные (ЭМУ).
Электронные усилители. Электронные усилители можно считать безынерционным звеном с передаточной функцией

так как их постоянная времени мала по сравнению с постоянными времени электромеханических элементов системы. Коэффициент усиления по напряжению 


Магнитные усилители. Наибольшее распространение в САУ получила схема двухтактного реверсивного МУ [5, 8-10]. По динамическим свойствам МУ этого типа эквивалентен апериодическому звену с передаточной функцией

Для увеличения коэффициента усиления используют внутреннюю обратную связь. Постоянная времени Тму для МУ с положительной обратной связью рассчитывается по следующей формуле:

где 







где 

Магнитные усилители рассчитываются для каждого отдельного случая, серийно промышленностью не выпускаются.
Электромашинные усилители. ЭМУ используются в САУ в случае наличия источника механической энергии (например, дизель и т.п.). Их применяют для управления двигателем постоянного тока, когда требуется высокий коэффициент усиления по мощности. Известны различные конструкции ЭМУ [3, 5, 6, 8, 10]. ЭМУ с поперечным полем описывается передаточной функцией апериодического звена второго порядка

где 











Возможно эта страница вам будет полезна:
Исполнительные устройства и объекты управления
Двигатели постоянного тока. Двигатель постоянного тока с независимым возбуждением может быть представлен структурной схемой, приведенной на рис. 2.2, где 


Когда выходом является угловая скорость, передаточная функция двигателя по управляющему воздействию

и по возмущению

Здесь

передаточный коэффициент двигателя по управлению, 








передаточный коэффициент двигателя по возмущению (моменту нагрузки) 




Для большинства двигателей выполняется неравенство 




Если за выходную величину двигателя принять угол поворота вала 



Задача №2.1.
Определить передаточные функции двигателя типа ДПМ-20-Н1/Н2-01.
Решение:
Для двигателя данного типа


Приведем единицы измерения параметров двигателя к системе СИ:

Скорость холостого хода двигателя

Рассчитаем передаточные коэффициенты двигателя по управлению и по возмущению:

Тогда получим передаточные функции двигателя

Асинхронные двигатели. Наиболее распространен индукционный двухфазный двигатель [1, 3, 8-10]. В динамическом отношении асинхронный двигатель рассматривается относительно угловой скорости как апериодическое звено и по управляющему воздействию 


где параметры двигателя вычисляются по следующим формулам:

где 

Задача №2.2.
Определить передаточные функции асинхронного двигателя типа АД-32Б. Технические характеристики двигателя этого типа:

Решение:
Угловая скорость двигателя при холостом ходе

Рассчитаем передаточные коэффициенты двигателя:

Тогда передаточные функции двигателя

Генератор постоянного тока. Генератор постоянного тока описывается дифференциальным уравнением первого порядка и он эквивалентен апериодическому звену [6]:

где 





Передаточная функция генератора относительно возмущения (

где 
Корректирующие элементы
При синтезе САУ для обеспечения ее устойчивости и требуемых показателей качества используют корректирующие элементы, в качестве которых применяют пассивные и активные четырехполюсники.
Пассивные четырехполюсники. Пассивные четырехполюсники представляют собой схемы из резисторов, конденсаторов и индуктив-ностей [5-7].
При вычислении передаточных функций четырехполюсников удобно воспользоваться операторными сопротивлениями: омическим 




Передаточную функцию такого четырехполюсника можно записать следующим образом:

Задача № 2.3.
Рассчитать передаточную функцию четырехполюсника, показанного на рис. 2.4.

Решение:
В данном случае

Поэтому

Если соединить последовательно два пассивных четырехполюсника через разделительный усилитель (рис. 2.5), то передаточная функция этой цепи

где 


Эта формула справедлива при условии, что входное сопротивление усилителя достаточно велико.
Активные четырехполюсники постоянного тока. В таких четырехполюсниках используются операционные усилители (УПТ) с высоким коэффициентом усиления 
Задача №2.4.
Рассчитать передаточную функцию активного четырехполюсника, показанного на рис. 2.7.
Решение:
В данном случае

Поэтому



Сравнивающие устройства (СУ)
На рис. 2.8, а показана схема СУ, выполненная на линейных потенциометрах 




В обеих схемах сигнал ошибки 


На рис. 2.9 показана мостовая схема СУ.

В частном случае в плечи моста могут быть включены активные сопротивления 



Схема СУ может быть выполнена и на сельсинах, и на вращающихся трансформаторах. Принципиальная схема таких устройств может быть показана так, как на рис. 2.10.

В качестве задающего (ЗУ) и приемного (ПУ) устройств могут использоваться и сельсины (СД-сельсин-датчик, СП-сельсин-приемник) и вращающиеся трансформаторы (ВТ-1 и ВТ-2). Сигнал ошибки 


На рис. 2.11 показана схема СУ, выполненная на операционном усилителе (активном четырехполюснике). Сигнал ошибки 


Для всех приведенных выше схем СУ (рис. 2.8-2.11) структурная схема показана на рис. 2.12, где 




Устойчивость непрерывных систем управления
Основное условие устойчивости: для того чтобы непрерывная система управления была устойчива, необходимо и достаточно, чтобы все корни ее характеристического уравнения имели отрицательную вещественную часть.
На комплексной плоскости корни, имеющие отрицательную вещественную часть, располагаются в левой полуплоскости и поэтому называются левыми, корни, имеющие положительную вещественную часть, располагаются в правой полуплоскости и называются правыми, а корни, расположенные на мнимой оси, — нейтральными. Поэтому основное условие устойчивости можно также сформулировать еще так: для того чтобы система была устойчива, необходимо и достаточно, чтобы все корни характеристического уравнения были левыми.
Необходимое условие устойчивости. Для того чтобы система была устойчива, необходимо, чтобы все коэффициенты ее характеристического уравнения

были строго одного знака:

Характеристическое уравнение. Характеристический полином 




При исследовании замкнутой системы (рис. 3.1, а) нет необходимости находить ее передаточную функцию, если известна передаточная функция 

Ее собственный оператор 
Алгебраические критерии устойчивости
При проведении исследования устойчивости с помощью алгебраических критериев следует, прежде всего, записав характеристическое уравнение, проверить выполнение необходимого условия устойчивости, так как его проверка не требует никаких вычислений и в то же время при его невыполнении не надо проводить дальнейших исследований.
Определители Гурвица. Из коэффициентов характеристического полинома

составим определитель 

который строится следующим образом. На главной диагонали выписываются элементы 







называют определителями Гурвица.
Критерий Гурвица (Hurwitz, 1895). Для того чтобы система была устойчива, необходимо и достаточно, чтобы все определители Гурвица, составленные из коэффициентов ее характеристического уравнения, при 

Критерий Льенара—Шипара (Lienard, Chipard, 1914). При выполнении необходимого условия 


Для уменьшения вычислений целесообразно при нечетном 

Выпишем необходимые и достаточные условия устойчивости для 

Задача №3.1.
Передаточная функция разомкнутой системы имеет вид

Исследовать устойчивость разомкнутой и замкнутой систем.
Решение:
Характеристический полином разомкнутой системы имеет вид

Все коэффициенты больше нуля и определитель 
Характеристический полином замкнутой системы

Все коэффициенты этого полинома при обоих значениях 



а при 

Следовательно, замкнутая система при 

Частотные критерии устойчивости
Критерий Найквиста (Nyqvist, 1932). Для того чтобы замкнутая система (с отрицательной обратной связью) была устойчива, необходимо и достаточно, чтобы амплитудно-фазовая частотная характеристика (АФЧХ) разомкнутой системы охватывала 


Если разомкнутая система устойчива 

Задача №3.2.
Исследовать устойчивость замкнутой системы, если передаточная функция разомкнутой системы имеет вид

Решение:
Частотные передаточные функции и вещественные и мнимые частотные функции имеют вид:

Для построения АФЧХ нужно определить координаты точек ее пересечения с осями координат и соединить эти точки плавной кривой. Необходимые расчетные данные приведены в таблице 3.1. На основе этих данных построены АФЧХ (рис. 3.2).

Расчетные данные к примеру 3.4

Расчетные данные к примеру 3.2. б)

В случае а) замкнутая система устойчива, так как 



Случай наличия нулевых корней. Если характеристическое уравнение разомкнутой системы имеет нулевые корни, т. е. ее передаточная функция может быть представлена в виде

то АФЧХ при 





Устойчивость систем с чистым запаздыванием
Рассмотрим замкнутую систему управления, передаточная функция разомкнутой системы которой имеет вид

где 



Для того чтобы замкнутая система, передаточная функция которой в разомкнутом состоянии имеет вид (3.2), была устойчива, необходимо и достаточно, чтобы АФЧХ разомкнутой системы охватывала точку 



Замкнутая система со звеном чистого запаздывания, будучи устойчивой при малом 




Частотная передаточная функция и амплитудная и фазовая частотные функции разомкнутой системы имеют вид
где

Отсюда видно, что появление чистого запаздывания не меняет модуль, а только вносит дополнительный отрицательный фазовый сдвиг 

Критическое запаздывание находится из условий

Решив эту систему, найдем критическое запаздывание и частоту 
Задача №3.3.
Определить критическое запаздывание и критическую частоту для системы, у которой передаточная функция в разомкнутом состоянии

Решение:
Без запаздывания замкнутая система устойчива. Условие (3.3) принимает вид

Отсюда получаем

Определение области устойчивости
Структура системы определяется составом элементов (звеньев) и связями между ними. При заданной структуре какие-либо параметры могут быть не фиксированными, т. е. их можно изменять. Такие параметры называют варьируемыми. Областью устойчивости в пространстве параметров называют множество всех значений варьируемых параметров, при которых система устойчива.
Если существует область устойчивости в пространстве параметров, то система называется структурно устойчивой (относительно заданных варьируемых параметров). В противном случае система называется структурно неустойчивой (относительно заданных варьируемых параметров).
Область устойчивости можно определить с помощью алгебраических критериев устойчивости. Рассмотрим это на примере.
Задача №3.4.
Передаточная функция разомкнутой системы 

Решение:
Характеристический полином замкнутой системы имеет вид

По критерию Льенара—Шипара имеем

Очевидно, эти неравенства будут выполнены, если

Эта система неравенств определяет область устойчивости.
Робастная устойчивость
Рассмотрим характеристический полином

Введем в рассмотрение 









Полиномы Харитонова. Пусть множество А является (гиперпараллелепипедом:

Здесь 


Полиномы

со следующими коэффициентами (коэффициенты выписаны в порядке убывания индексов)

называются полиномами Харитонова.
Необходимое условие робастной устойчивости. Так как при робастной устойчивости в параллелепипеде (3.4) должны быть устойчивыми характеристические полиномы при всех значениях коэффициентов из этого параллелепипеда, необходимо, чтобы был устойчивым характеристический полином при значениях коэффициентов 



Теорема Харитонова (1978). Для того чтобы система с характеристическим полиномом

была робастно устойчива на множестве (3.4), необходимо и достаточно, чтобы все полиномы Харитонова были устойчивыми.
В случае, когда 

а) при 

б) при 


в) при 

Задача №3.5.
Исследовать робастную устойчивость системы, характеристический полином которой имеет вид

Решение:
В данном случае

Так как 


Из (3.5а) и (3.56) имеем

или

Необходимое условие устойчивости для обоих полиномов выполняется. Для полинома 

а для полинома
На основе критерия Льенара—Шипара 

Задача №3.6.
Исследовать устойчивость замкнутой системы, если передаточная функция разомкнутой системы имеет вид

Решение:
Характеристический полином замкнутой системы имеет вид

где

Коэффициенты характеристического полинома удовлетворяют следующим условиям:

Следовательно, в принятых выше обозначениях имеем

Необходимое условие робастной устойчивости выполняется. Так как 


Определитель Гурвица

Поэтому замкнутая система не будет робастно устойчива. Теорема Харитонова справедлива при условии, что коэффициенты характеристического полинома изменяются на заданных интервалах независимо друг от друга. В противном случае устойчивость полиномов Харитонова является только достаточным условием робастной устойчивости.
Задача №3.7.
Исследовать устойчивость замкнутой системы при всевозможных заданных значениях параметров при условии, что передаточная функция разомкнутой системы имеет вид

Решение:
Характеристический полином замкнутой системы имеет вид

где

Для граничных значений коэффициентов характеристического полинома имеем

Необходимое условие робастной устойчивости выполняется. И так как 


Все коэффициенты больше нуля, но определитель Гурвица

Следовательно, полином 
При положительных значениях параметров необходимое условие устойчивости выполняется и определитель Гурвица

будет положительным при 
Следовательно, система устойчива при любых значениях параметров из области, определяемой неравенствами 
Качество систем управления. Показатели качества в переходном режиме
Показатели качества делятся на показатели качества в переходном режиме и показатели качества в установившемся режиме.
Показатели качества в переходном режиме делятся на прямые и косвенные. Последние делятся на корневые, частотные и интегральные.
Прямыми показателями качества называются показатели, которые получаются непосредственно по переходной характеристике. Из прямых показателей качества наиболее часто используют время регулирования и перерегулирование.
Временем регулирования 







где 
Корневые показатели качества. В качестве корневых показателей используют степень устойчивости и колебательность (степень колебательности). Степенью устойчивости 

степень колебательности системы (или ее характеристического полинома) можно определить следующим образом:

Здесь 
При исследовании степени устойчивости удобно воспользоваться следующим преобразованием. Полином

преобразуем, сделав подстановку 

Преобразование 





Задача №4.1.
Задан характеристический полином

Исследовать, превышает ли степень устойчивости заданного полинома единицу.
Решение:
Убедимся сначала, что рассматриваемый полином является устойчивым полиномом, для чего вычислим определитель Гурвица 3-го порядка, составленный из его коэффициентов.

Полином 




Без дальнейших вычислений ясно, что необходимое условие устойчивости преобразованного полинома не выполняется, и он является неустойчивым полиномом. Следовательно, степень устойчивости 
Задача №4.2.
Определить, превышает ли единицу степень устойчивости характеристического полинома

Решение:
Сначала проверим устойчивость заданного полинома. Для этого достаточно проверить знак определителя Гурвица 2-го порядка:

Полином 




Преобразованное характеристическое уравнение имеет вид

Все корни этого уравнения 

Интегральные показатели качества. В качестве интегральных оценок наиболее часто используют интегральную квадратическую ошибку (оценку)

и обобщенные интегральные квадратические оценки

Здесь 



Вычисление интегральных квадратических оценок. Из равенства Парсеваля

где

имеем

где

Так как

формулу для 

Определение интегральных квадратических показателей сводится к вычислению интеграла вида

Этот интеграл вычисляется с помощью теории вычетов и для 

Задача №4.3.
Вычислить интегральные показатели 



Решение:
Вычислим 



можно записать

Установившееся значение

Так как

то

На основании свойства преобразования Лапласа

Интегральная квадратическая оценка имеет вид

В данном случае (4.2)

Поэтому согласно (4.3а)

Теперь найдем 

Так как

имеем

Показатели качества в установившемся режиме
Наиболее полной характеристикой качества системы в установившемся режиме является установившаяся ошибка. Если на систему действуют два внешних воздействия — задающее воздействие 


где 



Установившиеся ошибки 


где

Здесь 












Статические и астатические системы. Установившаяся ошибка при постоянном внешнем воздействии называется статической ошибкой. Система называется статической, если статическая ошибка отлична от нуля, и астатической, если статическая ошибка равна нулю.
Система называется статической относительно задающего воздействия (возмущения), если статическая ошибка от задающего воздействия (возмущения) отлична от нуля, и астатической относительно задающего воздействия (возмущения), если статическая ошибка от задающего воздействия (возмущения) равна нулю.
Формулы (4.4) и (4.5) при постоянных 


Отсюда следует, что система будет статической относительно воздействия 






Говорят, что астатическая система обладает астатизмом 

Аналогично определяется астатическая система с астатизмом 
Если система обладает астатизмом 



Иначе говоря, этими формулами можно пользоваться при вычислении до первого отличного от нуля коэффициента.
Задача №4.4.
Определить установившуюся ошибку системы (рис. 4.1, б) при

Решение:
Так как все производные от 


Поэтому для определения искомой ошибки достаточно вычислить коэффициенты ошибок

Передаточные функции ошибки имеют вид

Отсюда

Так как

можно вычислить по формуле (4.6).

Таким образом, для ошибок имеем:

Структура астатической системы управления. Для того чтобы система управления была астатической с астатизмом 

Для того чтобы система управления была астатической с астатизмом 


Синтез систем управления
При выборе законов управления следует иметь в виду:
- введение в закон управления интегрирующего члена делает систему астатической и улучшает качество системы в установившемся режиме, но оказывает дестабилизирующее влияние (т. е. может сделать систему неустойчивой) и ухудшает качество системы в переходном режиме;
- введение в закон управления дифференцирующего члена оказывает стабилизирующее влияние (может сделать неустойчивую систему устойчивой) и улучшает качество системы в переходном режиме, не оказывая влияние на качество системы в установившемся режиме.
Задача №5.1.
Определить, при каких типовых законах управления статическая ошибка системы (рис. 5.1) будет равна нулю, когда передаточная функция объекта имеет вид


Решение:
Статическая ошибка будет равна нулю, если система будет астатической относительно задающего воздействия и возмущения. А для этого нужно, чтобы регулятор содержал интегрирующее звено. Поэтому искомыми законами управления будут пропорциональ-но-интегральный (ПИ) закон и пропорционально интегро-дифференци-альный (ПИД) закон.
Задача №5.2.
Определить, при каких типовых законах управления установившаяся ошибка системы (рис. 5.1) будет равна нулю при условии, что

Решение:
Так как установившаяся ошибка от задающего воздействия и возмущения имеют вид

установившаяся ошибка будет равна нулю, если 

и характеристическое уравнение имеет вид

В этом уравнении коэффициент при 

и характеристическое уравнение имеет вид

Определитель Гурвица 3-го порядка

соответствующим выбором параметров регулятора можно сделать Следовательно, при ПИД-законе система структурно устойчива и искомым законом устойчива и искомым законом управления является ПИД-закон.
Синтез параметров регулятора по минимуму интегральных оценок
Постановку и решение задачи синтеза параметров регулятора по минимуму интегральной оценки рассмотрим на примерах.
Задача №5.3.
При условии, что

и

определить параметр 

Решение:
Переходный процесс будет апериодическим, если корни характеристического уравнения рассматриваемой системы

будут вещественными, т. е. если детерминант этого уравнения

Так как 



Переходя к изображениям Лапласа, получим:

Следовательно,

В данном случае (4.2)

Поэтому (4.36)

Очевидно, что 


Задача №5.4.
При условии, что

и

(рис. 5.1), определить значение параметра 


Решение:
Согласно формуле Парсеваля

Как было вычислено (см. пример 5.3),

Для 

Поэтому

В данном случае


Подставив это выражение и выражение для 


Из условия

следует, что 


В точке экстремума эта производная положительна. Следовательно, в ней достигается минимум и соответственно решением будет 
Синтез систем управления максимальной степени устойчивости
Задача синтеза систем управления максимальной степени устойчивости ставится следующим образом. Задана структура системы управления и требуется определить 


Здесь 





Условия граничной (маргинальной) устойчивости. Система находится на границе устойчивости или имеет место граничная (маргинальная) устойчивость, если ее характеристический полином имеет нейтральные (т. е. расположенные на мнимой оси) нули и не имеет правых нулей. Такой полином называют маргинально устойчивым.
Рассмотрим полином с вещественными коэффициентами

Утверждение. 5.1 (необходимое условие маргинальной устойчивости). Если полином (5.1) маргинально устойчив, то все его коэффициенты неотрицательны:

Нуль 

Утверждение. 5.2 Полином (5.1) маргинально устойчив и 
1) 


2) Полином (5.1) не имеет особых нулей, расположенных не на мнимой оси.
Утверждение. 5.3 При выполнении необходимого условия (5.2) особый нуль не может быть вещественным числом, и если имеются особые нули, расположенные не на мнимой оси, то их количество равно числу, кратному четырем.
Нейтральные нули полинома 



Утверждение. 5.4 Для того чтобы все определители Гурвица полинома были равны нулю, необходимо и достаточно, чтобы все его коэффициенты с нечетными индексами были равны нулю.
Метод синтеза систем управления максимальной степени устойчивости. Метод решения задачи основан на преобразовании характеристического полинома

путем постановки 

становится маргинально устойчивым полиномом. И для 

Здесь 

Рассматриваемый метод состоит в следующем: решается система (5.7) относительно неизвестных параметров регулятора и степени устойчивости 

Утверждение. 5.5 Максимально возможная или граничная степень устойчивости 


и она достигается, когда вещественные части всех нулей полинома 
Поиск решения задачи синтеза максимальной степени устойчивости следует начинать со случая, когда степень устойчивости принимает граничное (максимально возможное) значение. Так как это возможно, когда все нули исходного полинома имеют одинаковые вещественные части или все нули преобразованного полинома 

Если эта система не имеет решения, то нужно перейти к системе (5.7) и решить ее при 
А) Синтез оптимальных по степени устойчивости параметров типовых регуляторов для объекта 2-го порядка
Рассмотрим синтез оптимальных по степени устойчивости параметров П- и ПИ-регуляторов для объекта 2-го порядка. Пусть передаточная функция объекта имеет вид

П-регулятор. Передаточная функция регулятора 

Характеристический полином принимает вид

Для коэффициентов преобразованного полинома

в соответствии с (5.6) имеем

В данном случае условия граничной устойчивости (5.9) принимают следующий вид:

Решив эту систему, получим

Так как степень устойчивости принимает граничное значение, найденное решение является искомым. Здесь 
ПИ-регулятор. Передаточная функция регулятора 

Характеристический полином имеет вид

Коэффициенты преобразованного полинома

определяются следующим образом (5.6):

Условия граничной устойчивости (5.9) принимают вид

Из последнего уравнения (5.10) имеем 

Решив эту систему, получим

Здесь 
Б) Синтез оптимальных по степени устойчивости параметров ПД- и ПИД-регуляторов для объекта 3-го порядка
Рассмотрим синтез оптимальных по степени устойчивости параметров типовых регуляторов для объекта 3-го порядка. Пусть передаточная функция объекта имеет вид

ПД-регулятор. Передаточная функция регулятора 

Характеристический полином замкнутой системы имеет вид

Для коэффициентов преобразованного полинома

имеем


Условия граничной устойчивости (5.9) для преобразованного полинома принимают вид

Из последнего равенства этого условия имеем 


Решив эту систему, найдем

Здесь 
ПИД-регулятор. Передаточная функция регулятора 

Характеристический полином синтезируемой системы и преобразованный полином имеют соответственно вид

где

Условие маргинальной устойчивости (5.9) принимает вид

Неравенства 




и условие маргинальной устойчивости можно записать в виде

Решив эту систему уравнений, получим

где свободные параметры 

Синтез систем управления по желаемой передаточной функции или метод полиномиальных уравнений
При задании желаемой передаточной функции 

Физическая осуществимость. Под физической осуществимостью или реализуемостью передаточной функции или системы, заданной этой передаточной функцией, понимают принципиальную возможность построения такой системы.
Передаточная функция физически осуществима, если степень числителя не больше степени ее знаменателя. Условие физической осуществимости передаточной функции

имеет вид

Грубость. Система называется грубой или робастной, если при малом изменении ее параметров свойство системы качественно не меняется. В случае линейной системы негрубость означает, что устойчивая система при малом изменении параметров становится неустойчивой.
При синтезе систем по желаемой передаточной функции грубость может быть нарушена, если правый полюс передаточной функции объекта компенсируется правым нулем передаточной функции регулятора и правый нуль объекта — правым полюсом регулятора.
Представим передаточную функцию объекта в виде

где 





Передаточная функция регулятора синтезируемой системы имеет вид

где полиномы 


Здесь 
Условимся степень полинома обозначать буквой 





Условие физической осуществимости регулятора (5.11):

При определении степеней неопределенных полиномов необходимо учитывать условие, получаемое из условия грубости:

Чтобы система (5.13)-(5.15) была разрешима, необходимо, чтобы порядок 


Метод синтеза регулятора по желаемой передаточной функции состоит в следующем. Исходя из заданных требований к качеству синтезируемой системы задается характеристический полином 






Задача №5.5.
Передаточная функция объекта имеет вид 


и установившаяся ошибка равна нулю (рис. 5.1) при постоянном задающем воздействии 

Решение:
Переходная составляющая ошибки будет изменяться в соответствии с заданной функцией, если характеристический полином синтезируемой системы имеет трехкратный корень, равный — 1 


Числитель и знаменатель передаточной функции объекта раскладываются на множители

Степени полиномов равны

Статическая ошибка 



Из последнего равенства 



и

Подставив эти полиномы в полиномиальное уравнение (5.12), получим

Отсюда, приравнивая коэффициенты при одинаковых степенях, найдем

Подставляя эти полиномы, а также выражения для 


Определение желаемой передаточной функции
Желаемая передаточная функция должна быть определена исходя из заданных требований к качеству синтезируемой системы. На ее выбор определенные ограничения накладывают условия грубости и физической осуществимости. В силу этих ограничений желаемая передаточная функция имеет вид

где 


Передаточная функция вида

называется нормированной передаточной функцией или передаточной функцией в форме Вышнеградского. Нормированная передаточная характеризуется тем, что в знаменателе коэффициент при старшей степени и свободный член равны единице.
Желаемая передаточная функция, когда наряду с другими требованиями нужно обеспечить заданное время регулирования 




определяются так:

Стандартные нормированные передаточные функции
Рассмотрим стандартные передаточные функции, которые не имеют нулей: числители являются константами. Так как значения этих констант не влияют на характер переходного процесса, примем их равными единице.
Передаточная функция с одинаковыми полюсами

обладает монотонной переходной характеристикой, неплохим быстродействием и среди передаточных функций 



Оптимальная по быстродействию передаточная функция передаточная функция с полюсами, имеющими одинаковые действительные части 



В таблице 5.1 представлены время регулирования при 
Задача №5.6.
Передаточная функция объекта имеет вид

Синтезировать регулятор, при котором переходный процесс является монотонным, время регулирования 

Решение:
Статическая ошибка будет равна нулю, если система будет астатической. Примем порядок астатизма 
В качестве стандартной передаточной функции выберем нормированную передаточную функцию с одинаковыми полюсами

Для этой передаточной функции из табл. 5.1, а имеем 

Учитывая формулы (5.186), для коэффициентов полинома знаменателя 

и соответственно,

Числитель и знаменатель передаточной функции объекта раскладываются на множители

Степени полиномов равны

Условия (5.13), (5.14) и (5.15) принимают вид

Этим условиям удовлетворяют 

При подстановке этих полиномов уравнение (5.12) принимает вид

Отсюда

и, соответственно

Подставляя их и выражения для 


Метод обратной задачи динамики
Методом обратной задачи динамики называют метод синтеза систем, когда по заданным уравнению объекта и требованиям к качеству системы управления определяется дифференциальное уравнение, решение которого удовлетворяет заданным требованиям, а затем из найденного уравнения выражается старшая производная и, после подстановки ее вместо старшей производной в уравнение объекта, находится требуемый закон управления.
Задача №5.7.
Пусть задана передаточная функция объекта

Задан требуемый закон изменения 



Здесь 

Решение:
Уравнение объекта имеет вид

Числа 
Следовательно, заданная функция 

Так как

подставив эти выражения в уравнение объекта, получим

Математическое описание дискретных систем
Определение 


ставящее дискретной функции 




Оригинал и его изображение обозначают одноименными буквами: оригинал — строчной буквой, а изображение — прописной буквой со звездочкой. 

а обратное 




называют модифицированным 


Функцию 




Уравнения и передаточные функции дискретных систем
Пусть модель дискретной системы управления описывается разностным уравнением

где 




это уравнение можно записать в операторной форме

Разностный оператор при выходной переменной

называется собственным (разностным) оператором, а разностный оператор при входной переменной

(разностным) оператором воздействия.

Отношение оператора воздействия к собственному оператору называется передаточной функцией в операторной форме. В соответствии с этим определением передаточная функция (в операторной форме) системы управления (6.1) имеет вид

Имеющее наименьший порядок отношение 

Передаточные функции в 



Однако если полиномы числителя и знаменателя 
Вычисление передаточных функций АИМ-системы
Как правило, приходится вычислять передаточные функции, когда известны характеристики дискретных элементов и передаточная функция непрерывной части. И в этом случае возникают особенности, которые делают вычисление передаточных функций дискретных систем более сложным.
АИМ-система включает АИМ-элемент (импульсный элемент с амплитудно-импульсной модуляцией) и непрерывную часть (рис. 6.2). Для получения математического описания АИМ-системы управления

ее представляют в виде эквивалентной схемы, состоящей из простейшего импульсного звена 1 и приведенной непрерывной части (ПНЧ) (рис. 6.3, а). Простейшее импульсное звено представляет собой звено, которое преобразует входную функцию 

где 

Если ограничиться изучением АИМ-системы только в дискретные моменты времени 



Зная связь между изображением Лапласа непрерывной функции и 






Оператор 




Дальше также используется оператор 




По аналогии с 


и в 








Вычисление 


где 








Задача №6.1.
Передаточная функция ПНЧ имеет вид
Требуется найти дискретную передаточную функцию
Решение:
Полюсами данной передаточной функции (т. е. корнями уравнения 



Если

содержит кратные полюса, то изображения 



Задача №6.2.
Передаточная функция ПНЧ имеет вид 

Решение:
Данная передаточная функция ПНЧ имеет двукратный полюс 


Преобразованная передаточная функция имеет простые полюса 



Используя разложение

где 


Отсюда, устремив 

Если среди простых полюсов функции 



Задача №6.3.
Определить 


Решение:
Данная функция имеет кратный полюс 




Приравняв коэффициенты при одинаковых степенях слева и справа и решив полученную систему уравнений, найдем


Следовательно,

Преобразуем правую часть к табличному виду:

Подставив это выражение в предыдущее равенство, произведем 

После подстановки соответствующих изображений из табл. 6.2 и преобразований получим
Положив 

Вычисление 



где 

В этом случае в зависимости от величины 

а) при


где

б) при








Задача №6.4.
АИМ-элемент вырабатывает прямоугольные импульсы длительности 





Решение:
Найдем сначала передаточную функцию приведенной непрерывной части. Так как передаточная функция формирующего звена

передаточная функция ПНЧ

где

Дискретная передаточная функция

В данном случае

Согласно (6.4)

Полюсами 



Следовательно,

Цифровые системы управления
Если цифровое устройство оперирует числовыми представлениями со значительным количеством разрядов, то- квантованием по уровню можно пренебречь. И системы управления с такими цифровыми устройствами можно рассматривать как АИМ-системы.
Цифровая система управления (ЦСУ) включает объект управления (ОУ), чувствительные элементы (ЧЭ), аналого-цифровой преобразователь (АЦП), цифровое вычислительное устройство (ЦВУ) и цифро-аналоговый преобразователь (ЦАП) (рис. 6.4). АЦП преобразует аналоговый сигнал в цифрой, а ЦАП — цифровой сигнал в аналоговый. ЦВУ выполняет все необходимые вычисления в соответствии с заданным алгоритмом управления, т. е. представляет собой регулятор.

Если пренебречь квантованием по уровню, цифровую систему управления можно представить в виде блок-схемы (рис. 6.5), состоящей из прерывателя, дискретного фильтра (ДФ), фиксатора нулевого порядка (ФНП) и непрерывной части (НЧ).

Прерыватель является моделью АЦП и преобразует непрерывный сигнал 





На этой схеме 


Передаточная функция (в изображениях Лапласа) ПНЧ

Дискретная передаточная функция ПНЧ

или

Используя эту передаточную функцию, можно построить структурную схему дискретной модели цифровой системы управления (рис. 6.7).

Задача №6.5.
Дана цифровая система управления, у которой передаточная функция непрерывной части

и цифровое вычислительное устройство реализует алгоритм управления, определяемый разностным уравнением

Требуется определить передаточную функцию данной системы относительно входа 

Решение:
Запишем уравнение регулятора в операторной форме:

Отсюда передаточная функция регулятора в операторной форме

и в 

Передаточная функция приведенной непрерывной части

Дискретная передаточная функция ПНЧ

Корнями полинома

являются


и производная

По формуле (6.2)
Следовательно,

Искомая передаточная функция замкнутой системы
ШИМ-системы управления
Блок-схема ШИМ-системы управления включает ШИМ-элемент (импульсный элемент с широтно-импульсной модуляцией) и НЧ (рис. 6.8). Пусть ШИМ-элемент вырабатывает прямоугольные импульсы с амплитудой 



где 


и называется коэффициентом модуляции.

Линеаризация. Уравнения ШИМ-элемента являются нелинейными. Если выполняется условие 


Задача №6.6.
Дана ШИМ-система управления (рис. 6.8). Амплитуда 



Требуется определить дискретную передаточную функцию замкнутой системы
Решение:
Так как

Искомая передаточная функция

Вычисление передаточных функций дискретных систем в общем случае
Выше мы рассмотрели вычисление передаточных функций дискретных систем, когда их эквивалентная схема за простейшим импульсным звеном содержит одно непрерывное звено — приведенную НЧ. Однако может потребоваться вычисление передаточных функций, эквивалентная схема которых имеет более общий вид (рис. 6.10). И в этом

случае справедливо правило, которое совпадает с правилом вычисления передаточных функций одноконтурной непрерывной системы: передаточная функция относительно входа 

Следует иметь в виду, что при вычислении передаточной функции прямой цепи и передаточной функции разомкнутой системы непрерывные звенья, расположенные за простейшим импульсным звеном, нужно рассматривать как одну НЧ.
Теперь рассмотрим схему с дискретным фильтром, включенным перед простейшим импульсным звеном (рис. 6.11). Установленное выше правило вычисления дискретной передаточной функции замкнутой системы остается в силе и в данном случае:

Задача №6.7.
Пусть в дискретной системе, представленной на рис. 6.11,


и период следования импульсов 


Решение:
Найдем необходимые для определения требуемых передаточных функций 




Подставив полученные выражения и выражения для 

Устойчивость дискретных систем. Характеристическое уравнение и основное условие устойчивости
Если внешние воздействия заданы, уравнения дискретной системы управления можно записать в виде

или в операторной форме

Характеристическое уравнение имеет вид

который получается при подстановке в собственный оператор

вместо оператора смещения 

Если задана передаточная функция системы управления, то при определении характеристического полинома нужно исходить из следующих положений: по определению передаточной функции в операторной форме ее знаменатель есть собственный оператор, а знаменатель передаточной функции в 
Общее решение неоднородного разностного уравнения имеет вид

где 

Линейная дискретная система управления называется устойчивой, если общее решение однородного разностного уравнения при 

Основное условие устойчивости: для того чтобы линейная дискретная система управления была устойчива, необходимо и достаточно, чтобы все корни ее характеристического уравнения были по модулю меньше единицы или, что то же, находились внутри единичного круга на 
Задача №7.1.
Передаточная функция системы

Требуется исследовать ее устойчивость.
Решение:
Характеристическое уравнение имеет вид

Его корнями являются

Их модули

Система устойчива.
Алгебраические критерии устойчивости
Необходимое условие устойчивости: для того чтобы все нули (корни) характеристического полинома

были по модулю меньше единицы 


Задача №7.2.
Характеристический полином дискретной системы имеет вид

Требуется определить устойчивость системы.
Решение:
Проверим необходимое условие устойчивости. В данном случае 

Необходимое условие устойчивости не выполняется. Следовательно, система неустойчива.
Исследование устойчивости, основанное на преобразовании единичного круга в левую полуплоскость. При преобразовании

внутренность единичного круга на 
Представим преобразованное характеристическое уравнение в стандартной форме:

При 

Для того чтобы дискретная система была устойчива, необходимо и достаточно, чтобы все корни преобразованного характеристического уравнения располагались в левой полуплоскости (имели отрицательную вещественную часть).
Задача № 7.3.
Характеристический полином дискретной системы управления имеет вид

Определить ее устойчивость.
Решение:
В данном случае

и в соответствии с (7.2в) коэффициенты преобразованного уравнения

Необходимое условие устойчивости выполняется: все коэффициенты преобразованного характеристического уравнения больше нуля. Определитель Гурвица 2-го порядка

Следовательно, система устойчива.
Критерий устойчивости Джури. Составим таблицу Джури, которая содержит (


Клетки нулевой строки заполняются коэффициентами характеристического уравнения в порядке возрастания нижних индексов:


Элементы первой строки

вычисляются следующим образом. Выписываются элементы нулевой строки и под ними те же элементы в обратном порядке. Из элементов верхней строки вычитаются соответствующие элементы нижней строки, умноженные на отношение последних элементов двух выписанных строк:


Последняя разность обращается в нуль, и она отбрасывается. Поэтому 1-я строка содержит 



Последняя разность, обращающаяся в нуль, отбрасывается. Формула для вычисления 



Критерий Джури (E.I. Jury). Для того чтобы все нули (корни) характеристического полинома

находились внутри единичного круга, необходимо и достаточно, чтобы при 

Если все элементы нулевого столбца, кроме последнего, положительны:

то положительность последнего элемента, т. е. условие 

Задача №7.4.
Характеристический полином дискретной системы управления имеет вид

Исследовать устойчивость данной системы.
Решение:
Сначала проверим необходимое условие устойчивости:

Необходимое условие устойчивости выполняется. Вычислим элементы таблицы Джури. Для нулевой строки имеем

Ниже приводится вычисление элементов таблицы Джури для остальных строк, кроме последней.

Элементы нулевого столбца (кроме последнего) равны

и они положительны. Так как выполняется необходимое условие устойчивости, последний элемент нулевого столбца также будет положительным. Следовательно, система устойчива.
Оценка качества дискретных систем. Показатели качества в переходном режиме
Качество дискретных систем управления определяется так же, как и качество непрерывных систем, и для его оценки можно использовать все ранее введенные при рассмотрении непрерывных систем показатели качества в переходном и установившемся режимах или их аналоги.
Прямые показатели качества — время регулирования и перерегулирование — определяются по переходной характеристике. Ее можно построить по дискретной переходной функции 

Рассмотрим вычисление переходной функции. Так как 

то 

где 


Пусть изображение переходной функции имеет вид

По определению 

Поэтому значения переходной функции 






Задача №8.1.
Определить значения переходной функции 

Решение:


Произведя деление числителя на знаменатель по правилу деления многочленов, для первых пяти слагаемых получим

Отсюда имеем:


Если разность между степенями знаменателя и числителя равна 





Другой способ вычисления переходной функции основан на формуле разложения, которая определяется следующим образом: если все полюса 



где

Начальные значения 



Задача №8.2.
Определить переходную функцию 


Решение:
В данном случае

Производная

полюсами являются

И в соответствии с формулой (8.1)

Начальное значение 




Если среди полюсов 

Задача №8.3.
Определить переходную функцию 


Решение:
В данном случае


Производная

полюсами являются

Слагаемое, соответствующее нулевому полюсу (

Полюс 
Полюс 

Таким образом, имеем

Начальное значение 
Вычисление переходной функции между точками съема сигналов . Функция 




Так как

и при единичном входном воздействии и нулевых начальных условиях

Соответственно для 




где

Задача №8.4.
Пусть в дискретной системе (рис. 8.2, a) 




Решение:
Искомой функцией будет 

В данном случае


Подставив эти выражения в (8.3), получим

Отсюда в соответствии с формулой (8.1)

Особенности переходного процесса дискретных систем.
В непрерывных линейных системах переходная функция всегда принимает установившееся значение при 


Если выполняется это условие, то переходный процесс называется оптимальным, а система, в которой происходит такой процесс, — оптимальной (по переходному процессу) системой.
Условие оптимальности системы (по переходному процессу). В системе с передаточной функцией вида

переходный процесс заканчивается за конечное число шагов, если

Задача №8.5.
Замкнутая дискретная система состоит из фиксатора нулевого порядка и НЧ с передаточной функцией 


Решение:
При фиксаторе нулевого порядка передаточная функция формирующего звена

Поэтому передаточная функция приведенной НЧ

и передаточная функция разомкнутой дискретной модели

Передаточная функция замкнутой системы

Отсюда в соответствии с формулой (8.4) для оптимального 

Показатели качества в установившемся режиме
Наиболее полной характеристикой качества в установившемся режиме является установившаяся ошибка 



Здесь 

Коэффициенты 
Статические и астатические системы. Система называется статической, если статическая ошибка отлична от нуля, и астатической, если статическая ошибка равна нулю. Статическая ошибка — это установившаяся ошибка при постоянных внешних воздействиях. Система является астатической и обладает астатизмом 



Из формул (8.56) и (8.5в) следует, что коэффициент позиционной ошибки 

Однако для астатической системы коэффициенты до первого отличного от нуля можно определить по формуле

Задача №8.6.
Задающее воздействие 

период 
Решение:
Так как


и установившаяся ошибка

Найдем коэффициенты ошибки 


Так как 


Установившаяся ошибка

Структура астатических систем. Дискретная система (рис. 8.6) будет астатической, если передаточная функция ДФ (регулятора) включает множитель 1/(


Задача №8.7.
Пусть в дискретной системе (рис. 8.6)
Задающее воздействие

Определить установившуюся ошибку.
Решение:
В данном случае установившаяся ошибка

Передаточная функция регулятора содержит в знаменателе множитель 

Следовательно,

Кстати готовые задачи на продажу по тау тут.
Синтез дискретных систем
Метод полиномиальных уравнений. Пусть задана передаточная функция приведенной НЧ 

Из заданных требований к качеству синтезируемой системы получена желаемая передаточная функция 


При синтезе регулятора нужно позаботится о том, чтобы он был физически осуществим и синтезированная система была грубой. Условие физической осуществимости регулятора, состоящее в том, что следствие не может предшествовать причине, будет выполнено, если степень числителя его передаточной функции не превышает степень ее знаменателя.
Условие грубости будет нарушено, если передаточная функция неизменяемой части содержит нули или полюса вне единичного круга, и они входят в передаточную функцию регулятора. И это условие накладывает определенные ограничения на выбор желаемой передаточной функции, что в общем случае исключает возможность задания желаемой передаточной функции произвольно. Поэтому обычно задаются желаемым характеристическим полиномом синтезируемой системы.
Разложим числитель и знаменатель передаточной функции неизменяемой части на два множителя, один из которых содержит нули внутри единичной окружности, другой — на и вне единичной окружности:

Здесь 


где показатель степени 




Здесь 
Обозначим степень произвольного полинома 


Полиномиальное уравнение (9.3) разрешимо, если число неизвестных (коэффициентов полиномов 




Степень желаемого характеристического полинома 

а также неравенству

где 
Порядок синтеза системы управления методом полиномиальных уравнений можно сформулировать следующим образом.
- Разложить полиномы числителя и знаменателя передаточной функции неизменяемой части на два множителя, один из которых имеет нули внутри единичной окружности, другой — на и вне единичной окружности. Если указанные полиномы не имеют нулей на и вне единичной окружности, то положить
и
; если они не имеют нулей внутри единичной окружности, то приравнять
и
постоянному множителю этих полиномов.
- Исходя из требований к качеству синтезируемой системы в переходном режиме и порядку астатизма выбрать характеристический полином синтезируемой системы
и число
. Степень полинома
должна удовлетворять условию (9.7).
- Из соотношений (9.4)-(9.6) определить степени неопределенных полиномов
и
и записать их с неизвестными коэффициентами.
- Подставить полученные неопределенные полиномы в полиномиальное уравнение (9.3) и определить их коэффициенты.
- Подставить найденные полиномы
и
в формулу для передаточной функции регулятора (9.2).
Для того чтобы синтезируемый регулятор был более простым, степени полиномов 


Задача №9.1.
Передаточная функция неизменяемой части

Требуется синтезировать регулятор, при котором статическая ошибка равна нулю и переходный процесс заканчивается за конечное число шагов.
Решение:
В данном случае


и соответственно


Степени

Так как статическая ошибка должна быть равна нулю, положим 

Минимально допустимой является степень 




Подставив их в полиномиальное уравнение (9.3), получим

или, после раскрытия скобок и приведения подобных членов,

Приравняв коэффициенты при одинаковых степенях, находим

Решив эту систему, получим

Следовательно,

Подставив эти выражения для 




Ошибка системы может быть представлена в виде ряда:
Коэффициент С0 называют коэффициентом статической или позиционной ошибки; коэффициент С1 — коэффициентом скоростной ошибки, С2 — коэффициентом ошибки от ускорения.
В статических системах коэффициент С0 отличен от нуля. В системах с астатизмом первого порядка С0 = 0, С1 ? 0. В системах с астатизмом второго порядка С0 = С1 = 0, С2 ? 0.
Выполним вычисления (разложим в ряд) при помощи Mathcad:
Коэффициент позиционной ошибки С0 = 0,515; коэффициент скоростной ошибки С1 = -0,249, коэффициент ошибки по ускорению С2 = 0,12.
Амплитуда ошибки 0,515.
Область устойчивости системы в плоскости одного параметра
Характеристическое уравнение системы имеет вид:
Предположим что параметр А — комплексное число. Заменим получим:
Вещественная и мнимая части:
Задавая различные значения , вычерчиваем кривую вектора , показанную на рис.11. После этого надо наметить предполагаемую область устойчивости. Для этого применяем правило штриховки, основанное на том, что границей в плоскости корней является мнимая ось и при движении по ней отдо область корней устойчивой системы располагается слева.
Рис. 11. D — разбиение плоскости комплексного параметра А.
Соответственно этому в плоскости на D — кривой необходимо отметить направление движения в диапазоне частот и также заштриховать левую часть кривой по отношению к этому движению. Часть плоскости, в сторону которой направлена штриховка может рассматриваться как предполагаемая область устойчивости.
Взяв из предполагаемой области устойчивости значение 5, проверим по критерию Рауса, устойчива ли система в этой области.
|
Ввод |
||||
|
a0 |
a1 |
a2 |
a3 |
a4 |
|
5 |
1,03 |
0,03075 |
0,00075 |
0,000015625 |
|
r |
c |
|||
|
5 |
0,03075 |
0,000015625 |
0 |
|
|
1,03 |
0,00075 |
0 |
0 |
|
|
4,854368932 |
0,027109223 |
0,000015625 |
0 |
0 |
|
37,99444892 |
0,000156337 |
0 |
0 |
0 |
|
173,4027719 |
0,000015625 |
0 |
0 |
0 |
|
10,00555108 |
0 |
0 |
0 |
0 |
В первом столбце нет ни одной перемены знака, следовательно система устойчива, а данная область действительно является областью устойчивости.
Оценка качества работы системы автоматического регулирования
Лекция
8 (6 часов)
ОЦЕНКА
КАЧЕСТВА РАБОТЫ САР
Показатели качества работы САР
Устойчивость является необходимым, но
недостаточным условием работоспособной системы, поскольку она (САР) должна
отвечать дополнительным требованиям в статике и динамике для обеспечения
хорошего функционирования, т.е. качественной работы. Под качеством САР понимают
совокупность требований, прямо или косвенно характеризующих точность ее работы.
Требования в статике ориентированы на точность
работы САР в установившихся режимах. При этом обычно необходимо, чтобы
установившаяся ошибка САР eуст не превышала заданных
допустимых значений.
При анализе динамики САР
предъявляются вполне определенные требования по отработке либо наиболее
характерных управляющих воздействий, либо наиболее неблагоприятных. К числу
неблагоприятных воздействий часто относят скачкообразное воздействие . Поскольку
мы рассматриваем линейные системы, то изменение величины скачка K влияет
только лишь на изменение масштаба по оси ординат, а перерегулирование s, время первого согласования tc, время
достижения переходным процессом максимального значения tm, а также
время регулирования tp при этом остаются неизменными.
Поэтому в качестве скачкообразного воздействия часто принимают единичную
функцию Хевисайда .
Нам уже известно, что реакцию САР на
единичное воздействие называют
переходной функцией .
Следовательно, оценку качества работы САР можно осуществлять по переходной
функции.
Разделим задачу оценки качества
работы САР на две подзадачи:
1) Оценка точности работы САР в
установившихся режимах;
2) Анализ качества переходных процессов в
САР.
Оценка точности работы САР в установившихся
режимах. Коэффициенты ошибок
При рассмотрении вопросов точности
будем считать, что на систему с единичной отрицательной обратной связью
действует управляющее воздействие, которое изменяется достаточно плавно при
больших временах наблюдения (рис.8.1), т.е. так, что существенное значение
имеют только первые l производных от —
,
, …,
,
а остальные, высшие производные могут быть
приняты равными нулю.
Наиболее полной характеристикой
качества системы в установившемся режиме является установившаяся ошибка. Найдем
ПФ САР по ошибке:

Разложим в ряд
Маклорена, сходящийся при малых s (т.е. при больших временах t):
,(1)
где коэффициенты ряда c0,
c1, c2,
… определяются по уравнению [1]:

где значению i=0
соответствует отсутствие дифференцирования.
Действительно, из (1) с помощью (2) можно
получить:
;

Ограничиваясь в (1) первыми l+1
слагаемыми (т.е. пренебрегая производными порядка выше l-го), для
изображения ошибки запишем выражение:

или, переходя к оригиналам:
.(3)
Коэффициенты c0,
c1, …, cl
называются коэффициентами ошибок.
Коэффициенты ошибок определяют
долевое участие в общей ошибке самого сигнала (c0) и l его
производных (c1, c2, …, cl). Если
входная и выходная
величины
одной размерности, то c0 есть безразмерная величина,
размерность c1 — секунда
(с), размерность c2 — с2 и т.д.
Первые три коэффициента ошибки,
которыми часто и ограничиваются на практике, имеют специальные названия: c0 —
коэффициент позиционной ошибки; c1 — коэффициент скоростной ошибки; c2 —
коэффициент ошибки по ускорению.
Примечание. Только что рассмотрен
случай, когда на САР действует только управляющее воздействие , поэтому,
строго говоря, выше речь шла о коэффициентах ошибки по управляющему
воздействию. В случае действия на САР дополнительного возмущающего воздействия в силу
линейности рассматриваемых САР
.
При учете второго слагаемого
аналогичным образом могут быть введены коэффициенты ошибки по возмущающему
воздействию.
Коэффициенты ошибок в статических и
астатических САР
Рассмотрим статическую систему (). Как
известно, при отработке постоянного управляющего воздействия (рис.8.2) в
ней имеет место установившаяся ошибка

где — коэффициент усиления разомкнутой
САР.
Производные первого и высших
порядков сигнала равны нулю:
,
,
, …
При больших временах t (в т.ч. в
установившемся режиме, т.е. при ) установившаяся ошибка, согласно
(3), равна
.
Сравнивая последние два выражения
для установившейся ошибки, получаем, что коэффициент ошибки

Астатические системы (), как было
показано раньше, постоянный управляющий сигнал (рис.8.2) отрабатывают без ошибки в
установившемся режиме:
.
Следовательно, для любой
астатической системы коэффициент ошибки c0 равен
нулю:
. (4)
Рассмотрим астатическую систему 1-го
порядка (). Подадим
на ее вход линейно изменяющийся сигнал (рис.8.3). Производные:
,
.
Согласно (3) и с учетом свойства (4)
астатических САР, установившаяся ошибка может быть записана в виде:
.
Вспоминая понятие добротности по
скорости ,
определяем, что коэффициент ошибки c1 в
астатической системе 1-го порядка равен

где — коэффициент передачи разомкнутой
САР.
Таким образом, в астатической
системе 1-го порядка коэффициент ошибки c1 по
скорости изменения задающего воздействия есть величина, обратная добротности
САР по скорости.
Астатические системы 2-го порядка () линейно
изменяющееся управляющее воздействие (рис.8.3) отрабатывают без
установившейся ошибки, поэтому для них, кроме условия (4),
. (5)
Подадим на вход астатической системы
2-го порядка воздействие, изменяющееся в квадратичной зависимости от времени (с
постоянным ускорением), (рис.8.4).
Производные ,
,
.
Поэтому установившаяся ошибка с
учетом (3) — (5) равна
.
С другой стороны, вспоминая понятие
добротности по ускорению ,
определяем, что коэффициент ошибки c2 в
астатической системе 2-го порядка равен

Таким образом, в астатической
системе 2-го порядка коэффициент ошибки c2 по
ускорению изменения задающего воздействия есть величина, обратная половине
добротности САР по ускорению.
Для астатических систем более
высокого порядка ()
рассуждения проводятся аналогично.
Определение некоторых коэффициентов
ошибок по ЛАЧХ разомкнутой САР
Точность работы САР в установившихся
режимах связана с характером изменения ЛАЧХ разомкнутой системе в области
низких частот (т.е. с ее наклоном в самой левой области частот). Суть
определения коэффициентов ошибок по ЛАЧХ разомкнутой САР -го порядка
состоит в определении частоты, при которой низкочастотный участок ЛАЧХ пересечет
ось частот, равной
где — коэффициент ошибки при отработке
управляющего воздействия, представляющего собой кривую -го порядка
вида . При этом
коэффициенты ошибок c0, c1, …, cn-1 будут
равны нулю.
На рис.8.5 изображены начальные
(низкочастотные) участки ЛАЧХ статической и астатических (n=1, 2, 3) САР и указаны
коэффициенты ошибок при отработке указанного воздействия.
При более сложных (полиномиальных)
законах изменения управляющего воздействия следует пользоваться формулами (1) и
(2) (что иногда очень затруднительно), либо воспользоваться следующим
алгоритмом.
Определение коэффициентов ошибок по
передаточной функции САР по ошибке
Пусть имеется ПФ системы по ошибке:
Коэффициенты ошибок в общем виде
можно определить, если числитель этой ПФ разделить на знаменатель (по правилу
деления полиномов), а затем сравнить полученный результат с равенством (1).
Для удобства выполнения операции
деления полиномов рекомендуется члены делимого и делителя располагать в порядке
увеличения степени s:
Деление выполняют до тех пор, пока
либо остаток не становится равным нулю, либо при достижении нужного количества
слагаемых в частном, позволяющих определить необходимые коэффициенты ошибок.
Для определения же коэффициентов ошибок полученный результат сравнивается с
выражением (1).
Пример. Передаточная функция
разомкнутой системы имеет вид:

Определить коэффициенты ошибок.
Решение. Определяем ПФ замкнутой
системы по ошибке:

Выполняем деление числителя на
знаменатель:
Сравнивая результат деления с (1),
определяем:
система автоматический
регулирование точность
;
;

Пусть задающее воздействие,
действующее на систему, имеет вид:

Тогда установившаяся ошибка по (3)
равна

Оценка качества переходных процессов
Существуют прямые и косвенные показатели
качества в переходном режиме.
К прямым методам относят такие, в которых оценка
качества дается по предварительно определенной (аналитически или с помощью
математического моделирования) или снятой экспериментально переходной
характеристике h(t).
В косвенных методах оценка дается на основе
анализа частотных и некоторых др. характеристик системы. Они требуют менее
громоздких вычислений, и поэтому более удобны. Косвенные методы подразделяют на
корневые, частотные и интегральные.
Все методы оценки качества переходных процессов
предполагают априори, что система является устойчивой.
Прямые методы оценки качества переходных
процессов
К прямым показателям качества относят время
регулирования и перерегулирование, определяемые по переходной характеристике.
Временем регулирования tp называют
время, по истечении которого отклонение выходной величины от установившегося
значения не превышает некоторой заданной величины D. Обычно принимают D= (0,01…0,05)hуст.
Перерегулированием s называют максимальное
отклонение переходной функции от установившегося значения, выраженное в
процентах:

В большинстве случаев процесс
считается устойчивым, если величина перерегулирования не превышает 10…30%.
Кроме tp и s, иногда в качестве
показателей качества рассматривают время первого согласования tс (которое
определяет быстродействие системы) и число колебаний Nк выходной
величины относительно установившегося значения за время tp (обычно не
должно превышать 1…2).
О взаимосвязи ЛАЧХ разомкнутой
системы с качеством переходного процесса
Для оценки качества переходного
процесса может быть использована связь между характером переходного процесса и
формой ЛАЧХ.
Низкочастотная часть ЛАЧХ связана с
работой САР в установившихся режимах (при больших временах наблюдения) и
характеризует точность работы системы.
Высокочастотный участок ЛАЧХ
определяет начальный участок переходного процесса.
Среднечастотная часть ЛАЧХ
определяет качество работы системы в переходных режимах. В этой области
находится частота среза wС,
определяющая быстродействие системы; по значению ЛФЧХ при частоте среза можно
определить запас устойчивости по фазе. По значению частоты среза с помощью
эмпирических зависимостей можно определить время первого согласования tc, время
достижения максимального значения tm и время
регулирования tp, т.е.
основные параметры переходного процесса. Эти эмпирические зависимости носят
название номограмм Честната и Майера [4], и будут использоваться нами в
дальнейшем.
Любая работоспособная система имеет
среднечастотный участок ЛАЧХ в области частоты среза wС с наклоном -1. Только при
этом условии можно получить качественную САР, причем чем больше длина
среднечастотного участка с наклоном -1, тем больше вероятность получения
качественной системы, с приемлемыми колебательностью и перерегулированием.
Некоторые следствия из анализа номограмм
Честната и Майера:
. Смещение ЛАЧХ вдоль оси частот
влево или вправо влияет только на быстродействие САР. Чем больше частота среза wС, тем система более
быстродействующая:

. Если в области высоких частот
имеется наклон ЛАЧХ -2, -3, -4 и т.д., то высокочастотный хвост этой ЛАЧХ можно
заменить добавлением ЛАЧХ апериодического звена с постоянной времени TS, равной
сумме постоянных времени всех апериодических звеньев, частоты сопряжения
которых находятся правее частоты среза (рис.8.8).
Другими словами, все непрерывные
звенья, постоянные времени которых малы (частоты сопряжения выше частоты
среза), могут быть заменены апериодическим звеном с передаточной функцией

где
Частотные показатели качества
переходных процессов
Исходя из того, что качественная САР
должна быть прежде всего устойчивой, в качестве частотных показателей качества
рассматриваются уже известные нам запас устойчивости по амплитуде А и запас
устойчивости по фазе y, а также
резонансный максимум АЧХ замкнутой системы Мр и полоса пропускания (рис.8.9).
Запасы устойчивости по амплитуде и
по фазе характеризуют близость системы к границе устойчивости и определяются по
логарифмическим частотным характеристикам разомкнутой САР. Чем дальше система
от границы устойчивости, тем она лучше. В качественных системах запасы
устойчивости должны составлять:
А=6…20 дБ y=30…60°.
Резонансный максимум является
показателем колебательности САР, и, как будет показано ниже, позволяет более
удобно оценивать запас устойчивости САР. Резонансный максимум равен отношению
максимального значения Amax АЧХ замкнутой системы,
которое имеет место при резонансной частоте wр,
к ее начальному значению A(0). Другими словами, показатель
колебательности есть максимальное отношение амплитуд выходного xmax и входного gmax
воздействий, имеющее место при частоте задающего воздействия w=wр, определяемой
экспериментальным или расчетным путем:

Обычно в качественных системах
показатель колебательности не должен превосходить значений 1,1…1,5.
Для оценки величины резонансного
максимума можно пользоваться эмпирическими формулами связи между запасом
устойчивости по фазе и резонансным максимумом:

а также связи между резонансным
максимумом и перерегулированием (s
в долях):

.
Зная время достижения переходной
функцией максимального значения

можно приближенно с помощью
зависимости рис.8.10 [3] определить время первого согласования tc.

Оценка качества работы САР по
резонансному максимуму АЧХ замкнутой системы
Определение резонансного максимума
по ЧХ разомкнутой САР
Пусть имеется САР, изображенная на
рис.8.11.
Частотная (или, как ее еще называют,
амплитудно-фазовая) характеристика замкнутой системы:
Амплитудно-частотная характеристика
(АЧХ):

Примерный вид нормированной АЧХ
представлен на рис.8.12.
Чем выше резонансный максимум Mp, тем меньше
запас устойчивости, и тем больше склонность системы к колебаниям. В реальных
САР величина Mp находится в
пределах 1,0…1,8.
Возьмем на АЧХ некоторую точку а
(рис.8.12), значение АЧХ в ней обозначим через М.
Отобразим точку а на комплексную
плоскость частотной характеристики разомкнутой САР. Для этого в формуле (1)
подставим :

Частотная характеристика разомкнутой
САР в точке а может быть определена в виде:
,
и тогда

Решая уравнение (3) относительно u и v, можно
прийти к выводу, что линия равных значений М отображается на плоскость ЧХ
разомкнутой САР в окружность, уравнение которой:
, (4)
где — радиус окружности;

центра окружности по оси абсцисс.
Построив семейство таких окружностей
(рис.8.13) для разных значений 1<М<¥,
замечаем, что при M®¥ радиус окружности R®0 и
окружность вырождается в точку с координатами (-1; j0). С другой
стороны, при М®1 радиус R®¥, и
окружность вырождается в линию, параллельную оси ординат и отстоящую от нее на
0,5.
Можно отметить, что для значений
0<M<1
получится семейство окружностей, расположенный справа от прямой М=1 симметрично
с первым семейством. При М=0 окружность вырождается в точку, совпадающую с
началом координат.
Величина резонансного максимума
может быть определена путем нахождения окружности, которой касается ЧХ
разомкнутой САР (совпадает только в одной точке). Например, САР, ЧХ которой в
разомкнутом состоянии имеет вид W(jw) (рис.8.13)
будет иметь резонансный максимум Мр=1.5.
Проектирование САР с заданным
уровнем Мр
На практике очень часто ставят
задачу: спроектировать систему, для которой Мр будет не больше некоторого
заданного значения Mзад. Очевидно, что в общем случае
задача будет решена, если обеспечить такой вид ЧХ разомкнутой системы, чтобы ее
кривая не заходила внутрь окружности М=Мзад (рис.8.14). Таким образом,
окружность М=Мзад ограничивает запретную зону для амплитудно-фазовой
характеристики (заштрихована).
Рассмотрим частный случай. Пусть
Мзад=2.
Решение.
По заданной величине Мзад определяем
координаты радиуса и центра окружности:
;

Строим окружность с центром в точке
(-1,33; 0) радиуса 0,67 (рис.8.15).
Чтобы реальное значение резонансного максимума
было меньше заданного, необходимо, чтобы ЧХ разомкнутой САР не заходила в
запретную зону, т.е. внутрь окружности.
Пусть точка b
принадлежит ЧХ разомкнутой САР. Обозначим угол, который образует вектор А,
проведенный из начала координат в точку b,
с отрицательным направлением оси u,
через m.
Очевидно, что угол m равен запасу устойчивости САР по
фазе.
Из рис.8.15 следует, что запретная зона может
иметь место при значении модуля АЧХ А разомкнутой системы
или
. (5)
Очевидно также, что для любого
модуля А существует такой угол m,
при котором ЧХ разомкнутой системы не заходит в запретную зону.
Из треугольника ObO1 можно
найти выражение для запаса по фазе, при котором ЧХ может попасть в запретную
зону:

Используя (6), можно построить
называемые m-кривые
(рис.8.16) [1], пользуясь которыми, для любого значения модуля А можно найти то
значение величины m, при
котором обеспечивается требуемое значение резонансного максимума.
Для зависимости (6) можно определить,
что максимум будет иметь место при , а само значение максимума:

Если имеются логарифмические
частотные характеристики разомкнутой системы, то по имеющимся m-кривым и при заданном
значении М можно построить требуемое значение запаса по фазе для каждого
значения модуля А, удовлетворяющего условию (5), которое для ЛАЧХ принимает
вид:
. (8)
В результате можно получить
запретную зону для ЛФЧХ. Чтобы показатель колебательности Мр не был больше
заданного значения, ЛФЧХ не должна заходить в эту область.
Определим условия, при которых ЛФЧХ
гарантированно не заходит в запретную область, на примере типовой ЛАЧХ типа
«-2-1-2».
Пусть передаточная функция разомкнутой САР равна

причем .
Логарифмические частотные
характеристики такой разомкнутой САР представлены на рис.8.17.
Выражение для ЛФЧХ для (9) имеет вид:
где — запас по фазе, который запишем
следующим образом:

Для зависимости (10) можно
определить, что ее максимум будет иметь место при 
значение максимума:

Таким образом, максимальный запас по
фазе определяется только постоянными времени, определяющими участок с наклоном
«-1».
В [1] доказано, что значение
максимального запаса по фазе (11) будет не меньше предельно допустимого запаса
по фазе (7) при условии:


(12)
В граничном случае (равенство) ЛФЧХ
будет касаться запретной зоны в точке m=mmax. В этом
случае будет иметь место максимальное быстродействие системы при заданном
уровне Мр.
Таким образом, при выполнении
условий (12) для ЛАЧХ разомкнутой системы вида «-2-1-2» требования по
величине Мр будут выполнены.
В случае, когда ЛАЧХ разомкнутой
системы имеет вид «-2-1-2-3-4…», также можно пользоваться
представленными зависимостями, предварительно заменив все апериодические звенья
с частотами сопряжения правее частоты среза одним апериодическим звеном с
постоянной времени TS,
равной сумме постоянных времени этих звеньев.











































































































и
; если они не имеют нулей внутри единичной окружности, то приравнять
и
постоянному множителю этих полиномов.



























