Лекция 17. Расчет установившейся ошибки в системах управления.
Структурные признаки астатизма
Установившейся (статической) ошибкой называют
постоянное значение сигнала ошибки x(t)=g(t)-y(t),
которое она приобретает по окончании переходного процесса: , рисунок 116.
Очевидно, установившаяся ошибка зависит от законов
изменения и численных характеристик входных сигналов системы. Поэтому при ее
определении принято рассматривать так называемые типовые входные сигналы,
законы изменения которых составляют степенной ряд относительно времени.
Например, для задающего воздействия:
,
,

далее.
При наличии нескольких воздействий на линейную систему
для определения xуст используется
принцип суперпозиции – реакция линейной системы на совокупность входных
сигналов совпадает с алгебраической суммой ее реакций на каждый из сигналов в
отдельности:

каждое слагаемое, или составляющая сигнала ошибки, определяется
для i-го входного сигнала при условии, что остальные
тождественно равны нулю. Такой подход полностью соответствует определению
передаточной функции и позволяет выполнять расчет установившейся ошибки на
основе структурной схемы системы.
Рассмотрим порядок расчета установившейся ошибки на
следующем достаточно общем примере (рисунок 117).
В соответствии с принципом суперпозиции установившаяся
ошибка будет определяться здесь в виде суммы трех составляющих .
Изображение по Лапласу ошибки от задающего воздействия
получают через передаточную функцию замкнутой системы по ошибке при известном изображении задающего
воздействия G(s):
, где
F(s) – основная передаточная функция замкнутой системы.
Для структурной схемы на рисунке 117

— передаточная функция
разомкнутой системы, или прямой цепи системы, для рассматриваемого примера.
Непосредственно для расчета
установившегося значения ошибки от задающего воздействия используют теорему о
конечном значении для преобразования Лапласа:
В результате:

Изображение по Лапласу ошибки от возмущающего
воздействия получают через передаточную функцию замкнутой системы по ошибке от
возмущения при известном изображении возмущающего
воздействия F(s):
, где
Ff(s) –передаточная функция замкнутой системы по
возмущающему воздействию,

Wf(s)
– передаточная функция разомкнутой системы по возмущению (передаточная функция
участка прямой цепи системы от точки приложения возмущающего воздействия до
выхода системы).
Для структурной схемы на рисунке 8 необходимо
учитывать два возмущающих воздействия, приложенные в различные точки системы.
Для f1:
,


Для f2:
,


Расчет упрощается для
системы с единичной отрицательной обратной связью (рисунок 118):


разомкнутой системы.
Найдем установившуюся ошибку
для некоторых типовых вариантов задающего воздействия.
При получим:

При получим:

При 

Если установившаяся ошибка
тождественно равна нулю при каком-либо типовом варианте входного сигнала,
независимо от его численных характеристик, систему называют астатической по
рассматриваемому входному сигналу.
Количество типовых вариантов
входного сигнала – членов степенного ряда, при которых установившаяся ошибка
тождественно равна нулю, определяет порядок астатизма.
Рассматриваемая система
обладает свойством астатизма второго порядка по задающему воздействию.
Рассмотрим установившуюся
ошибку от возмущения f1:


–
коэффициент передачи разомкнутой системы по возмущению f1.
При получим:

При получим:

При 
тот же результат.
Отметим, что по возмущению f1 рассматриваемая система
не является астатической. Кроме того, она не в состоянии отработать два последних
варианта входного сигнала.
Рассмотрим установившуюся
ошибку от возмущения f2:


–
коэффициент передачи разомкнутой системы по возмущению f2.
При получим:

При получим:

При 

По возмущению f2 рассматриваемая система имеет
астатизм первого порядка. Она не в состоянии отработать возмущающее
воздействие, изменяющееся во времени с постоянным ускорением.
Подведем некоторые итоги:
1. Наличие и глубина
свойства астатизма зависят от точки приложения входного сигнала.
2. Постоянные времени
звеньев системы не влияют на ее точность.
3. Увеличение значения
коэффициента передачи разомкнутой системы приводит к снижению величины
установившейся ошибки.
Для систем с единичной
отрицательной обратной связью существуют достаточно простые структурные
признаки астатизма.
Рассмотрим структуру,
показанную на рисунке 119.
В общем случае передаточная
функция разомкнутой системы может быть представлена в следующей форме:

Тогда получим:
и для общего вида задающего воздействия 


Результат нахождения этого
предела зависит от соотношения показателей степени:
— при l>v установившаяся
ошибка равна нулю независимо от остальных параметров, то есть имеет место
астатизм;
— при l=v получаем
константу;
— при l<v установившаяся
ошибка стремится к бесконечности, то есть система не в состоянии отработать
входной сигнал.
Учитывая, что минимальное
значение v нулевое,
получаем условие астатизма по задающему воздействию: l>0.
Таким образом, структурный
признак астатизма по задающему воздействию в системе с единичной отрицательной
обратной связью состоит в наличии нулевых корней в знаменателе передаточной
функции разомкнутой системы, или интегрирующих звеньев в прямой цепи системы.
Нетрудно также убедиться,
что положительное значение l совпадает
с порядком астатизма.
Для получения признака
астатизма по возмущающему воздействию представим передаточные функции на
рисунке 10 в форме:


k1k2=k, m1+m2=m,
n1+n2=n,
причем и
.
Тогда получим:
и для общего вида возмущающего воздействия 


Все вышеприведенные выводы
можно повторить для показателя степени l1.
Таким образом, структурный
признак астатизма по возмущающему воздействию в системе с единичной
отрицательной обратной связью состоит в наличии нулевых корней в знаменателе
передаточной функции участка системы до точки приложения воздействия, или
интегрирующих звеньев на том же участке.
Лекция 17.
Расчет
установившейся ошибки в системах
управления. Структурные признаки
астатизма. Коэффициенты ошибок
Установившейся
(статической) ошибкой называют постоянное
значение сигнала ошибки x(t)=g(t)-y(t),
которое она приобретает по окончании
переходного процесса:
,
рисунок 116.
Очевидно,
установившаяся ошибка зависит от законов
изменения и численных характеристик
входных сигналов системы. Поэтому при
ее определении принято рассматривать
так называемые типовые входные сигналы,
законы изменения которых составляют
степенной ряд относительно времени.
Например, для задающего воздействия:
,
,
и так далее.
При наличии
нескольких воздействий на линейную
систему для определения xуст
используется принцип суперпозиции –
реакция линейной системы на совокупность
входных сигналов совпадает с алгебраической
суммой ее реакций на каждый из сигналов
в отдельности:
,
где каждое слагаемое,
или составляющая сигнала ошибки,
определяется
для i-го
входного сигнала при условии, что
остальные тождественно равны нулю.
Такой подход полностью соответствует
определению передаточной функции и
позволяет выполнять расчет установившейся
ошибки на основе структурной схемы
системы.
Рассмотрим порядок
расчета установившейся ошибки на
следующем достаточно общем примере
(рисунок 117).
В соответствии с
принципом суперпозиции установившаяся
ошибка будет определяться здесь в виде
суммы трех составляющих
.
Изображение по
Лапласу ошибки от задающего воздействия
получают через передаточную функцию
замкнутой системы по ошибке
при известном изображении задающего
воздействия G(s):
,
где (s)
– основная передаточная функция
замкнутой системы. Для структурной
схемы на рисунке 117
,
где
— передаточная функция разомкнутой
системы, или прямой цепи системы, для
рассматриваемого примера.
Непосредственно
для расчета установившегося значения
ошибки от задающего воздействия
используют теорему о конечном значении
для преобразования Лапласа:
В результате:
.
Изображение по
Лапласу ошибки от возмущающего воздействия
получают через передаточную функцию
замкнутой системы по ошибке от возмущения
при известном изображении возмущающего
воздействия F(s):
,
где f(s)
–передаточная функция замкнутой системы
по возмущающему воздействию,
;
Wf(s)
– передаточная функция разомкнутой
системы по возмущению (передаточная
функция участка прямой цепи системы от
точки приложения возмущающего воздействия
до выхода системы).
Для структурной
схемы на рисунке 8 необходимо учитывать
два возмущающих воздействия, приложенные
в различные точки системы.
Для f1:
,
,

Для f2:
,
,

Расчет упрощается
для системы с единичной отрицательной
обратной связью (рисунок 118):


где k=k1k2k3
– коэффициент передачи разомкнутой
системы.
Найдем установившуюся
ошибку для некоторых типовых вариантов
задающего воздействия.
При
получим:

При
получим:

При
получим:

Если установившаяся
ошибка тождественно равна нулю при
каком-либо типовом варианте входного
сигнала, независимо от его численных
характеристик, систему называют
астатической по рассматриваемому
входному сигналу.
Количество типовых
вариантов входного сигнала – членов
степенного ряда, при которых установившаяся
ошибка тождественно равна нулю, определяет
порядок астатизма.
Рассматриваемая
система обладает свойством астатизма
второго порядка по задающему воздействию.
Рассмотрим
установившуюся ошибку от возмущения
f1:
,

где
– коэффициент передачи разомкнутой
системы по возмущению f1.
При
получим:

При
получим:

При
получим тот же результат.
Отметим, что по
возмущению f1
рассматриваемая система не является
астатической. Кроме того, она не в
состоянии отработать два последних
варианта входного сигнала.
Рассмотрим
установившуюся ошибку от возмущения
f2:
,

где
– коэффициент передачи разомкнутой
системы по возмущению f2.
При
получим:

При
получим:

При
получим:

По возмущению f2
рассматриваемая система имеет астатизм
первого порядка. Она не в состоянии
отработать возмущающее воздействие,
изменяющееся во времени с постоянным
ускорением.
Подведем некоторые
итоги:
1. Наличие и глубина
свойства астатизма зависят от точки
приложения входного сигнала.
2. Постоянные
времени звеньев системы не влияют на
ее точность.
3. Увеличение
значения коэффициента передачи
разомкнутой системы приводит к снижению
величины установившейся ошибки.
Для систем с
единичной отрицательной обратной связью
существуют достаточно простые структурные
признаки астатизма.
Рассмотрим
структуру, показанную на рисунке 119.
В общем случае
передаточная функция разомкнутой
системы может быть представлена в
следующей форме:

где l0.
Тогда получим:
и для общего вида
задающего воздействия
,
которому соответствует изображение
,

Результат нахождения
этого предела зависит от соотношения
показателей степени:
— при l>v
установившаяся ошибка равна нулю
независимо от остальных параметров, то
есть имеет место астатизм;
— при l=v
получаем константу;
— при l<v
установившаяся ошибка стремится к
бесконечности, то есть система не в
состоянии отработать входной сигнал.
Учитывая, что
минимальное значение v
нулевое, получаем условие астатизма по
задающему воздействию: l>0.
Таким образом,
структурный признак астатизма по
задающему воздействию в системе с
единичной отрицательной обратной связью
состоит в наличии нулевых корней в
знаменателе передаточной функции
разомкнутой системы, или интегрирующих
звеньев в прямой цепи системы.
Нетрудно также
убедиться, что положительное значение
l
совпадает с порядком астатизма.
Для получения
признака астатизма по возмущающему
воздействию представим передаточные
функции на рисунке 10 в форме:


где l1+l2=l,
k1k2=k,
m1+m2=m,
n1+n2=n,
причем
и
.
Тогда получим:
и для общего вида
возмущающего воздействия
,
которому соответствует изображение
,

Все вышеприведенные
выводы можно повторить для показателя
степени l1.
Таким образом,
структурный признак астатизма по
возмущающему воздействию в системе с
единичной отрицательной обратной связью
состоит в наличии нулевых корней в
знаменателе передаточной функции
участка системы до точки приложения
воздействия, или интегрирующих звеньев
на том же участке.
Более общий подход
к оценке точности линейных систем
управления основан на получении и
использовании коэффициентов ошибок.
Рассмотрим его на примере анализа
реакции системы на задающее воздействие.
Если рассматривать
произвольный закон изменения задающего
воздействия g(t),
то эта функция времени может быть
разложена в степенной ряд относительно
аргумента t.
Члены степенного ряда, как известно,
находятся через производные
,
,
…,
,
…
В общем случае ряд
бесконечен. Поэтому с практической
точки зрения рассматривать такое
представление сигнала целесообразно
только при достаточно плавном его
изменении, когда можно ограничиться
конечным числом членов ряда, имея в
виду, что при n
большем некоторого m
можно принять
,
n>m.
Для задачи оценки
установившейся ошибки при
с формулированное допущение вполне
корректно, так как в противном случае
эта задача не имеет смысла.
Коэффициенты
ошибки получают разложением передаточной
функции замкнутой системы по ошибке в
степенной ряд (ряд Тейлора) относительно
аргумента s:
,
где коэффициенты
разложения в общем случае находят как
значения производных в точке s=0:

Передаточные
функции, представляющие собой отношения
полиномов, при достаточно высоком
порядке системы могут оказаться слишком
сложными для дифференцирования. Поэтому
на практике коэффициенты их разложения
в ряд чаще находят путем деления полиномов
– числителя на знаменатель.
С учетом разложения
передаточной функции в ряд можно записать
изображение по Лапласу сигнала ошибки
в следующей форме:
.
Отметим, что с
учетом сформулированного выше допущения
такое представление сигнала ошибки
соответствует
или
.
Перейдя к оригиналу
с учетом теоремы дифференцирования
получим:
.
Вернемся к
рассмотренному выше примеру и предположим,
что задающее воздействие изменяется
по произвольному закону, но при достаточно
больших значениях времени этот закон
аппроксимируется выражением
.
Найдем коэффициенты
разложения передаточной функции по
ошибке
в степенной ряд.
Здесь сразу можно
отметить, что номер первого ненулевого
члена ряда определяется низшей степенью
аргумента s
в числителе дроби, то есть первые два
коэффициента c0
и c1
здесь получаем тождественно равными
нулю.
Далее получим:
В результате
получаем
,
,
,
и так далее.
Найдем производные
задающего воздействия:
,
,
.
Ясно, что для
определения установившейся ошибки
достаточно первых трех коэффициентов:
.
В заключение
отметим, что порядок астатизма системы
по какому-либо входному сигналу совпадает
с количеством нулевых коэффициентов
ошибки, получаемых в разложении в ряд
передаточной функции по ошибке от
данного входного сигнала.
Здравствуйте на этой странице я собрала теорию и практику с примерами решения задач по предмету теория автоматического управления с решением по каждой теме, чтобы вы смогли освежить знания!
Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу!
ТАУ
Теория автоматического управления является основной общепрофессиональной дисциплиной направления подготовки дипломированного специалиста «Автоматизированные технологии и производства».
Основной целью автоматизации является исключение непосредственного участия человека в управлении производственными процессами и другими техническими объектами.
В настоящее время автоматизация технологических процессов представляет собой одно из важнейших средств роста эффективности производства, интенсификации развития народного хозяйства. Таким образом, задача изучения дисциплины «Теория автоматического управления» состоит в освоении основных принципов построения и функционирования автоматических систем управления на базе современных математических методов и технических средств.
Построение структурных схем и сигнальных графов автоматических систем
В теории систем автоматического управления (САУ) широко используют понятие звена, под которым понимают некоторый физический элемент системы (усилитель, двигатель, датчик и т. п.) либо формально выделенную часть математической модели системы (например, уравнение равновесия напряжений якорной цепи двигателя), для которых указаны входные (одна или несколько) и выходная (обычно одна) переменные. При этом говорят, что звено преобразует входные переменные, т. е. приложенные к звену внешние воздействия, в выходную переменную — реакцию. В математическом плане обобщением понятий САУ и звена САУ является понятие динамической системы.
Возможно эта страница вам будет полезна:
Дифференциальное уравнение (ДУ) линейной динамической системы с одним входом и одним выходом записывается в классической форме следующим образом:

Здесь 







где

полиномы степеней, соответственно, 




Определим формально операторную передаточную функцию (ОПФ) 


Преобразование ДУ (1.1) по Лапласу при нулевых начальных условиях (ННУ) дает

(использована теорема об изображении производной при ННУ: если
a 

Передаточной функцией (ПФ) 

Отсюда в силу уравнения (1.4) и с учетом (1.3) получаем:

т. е. ПФ совпадает с ОПФ с точностью до обозначения аргумента
В связи с этим в дальнейшем будем использовать одно и го же обозначение, например 







С учетом сказанного рекомендуется следующая методика нахождения ПФ поДУ( 1.1), не требующая применения преобразования Лапласа:
Если система имеет несколько входов и/или выходов, т. е. является многомерной, то уместно говорить о множестве передаточных функций, связывающих каждый вход 


Все они имеют один и тот же знаменатель (если не производить сокращения одинаковых нулей и полюсов) и, в общем случае, разные числители:

Теперь приведем передаточные функции наиболее важных типовых звеньев систем автоматического управления. 1 Пропорциональное звено:

где 

- Интегрирующее звено:

где 
В качестве обобщения можно рассматривать интегрирующее звено произвольного порядка:

- Дифференцирующее звено:

Обобщенное дифференцирующее звено:

Апериодическое звено:

где 
- Форсирующее звено:

- Апериодическое звено 2-го порядка:

где 

где 


8. Консервативное звено

где 
Часто в передаточных функциях звеньев 4, 6, 7 и 8 вместо единицы пишут коэффициент передачи к.
Построение структурных схем и М-графов динамических систем
При анализе и синтезе систем автоматического управления часто прибегают к графическом)’ изображению уравнений, описывающих систему. Для этой цели обычно используют структурные схемы и, реже, сигнальные графы В структурной схеме переменные обозначаются отрезками прямых или ломаными линиями, оканчивающимися стрелками В графе каждой переменной соответствует некоторая вершина. Мы будем рассматривать только одну разновидность сигнальных графов, а именно граф Мейсона (Мэзона), или, короче, М-граф

Уравнение звена вила 
В вершину графа могут входить несколько дуг. В этом случае действует следующее соглашение: переменная, отождествляемая с вершиной, в которую входят дуги, равна взвешенной сумме переменных, соответствующих вершинам, из которых эти дуги исходят, причем в качестве весовых коэффициентов выступают передачи дуг. Так, М-граф, приведенный на рис. 11,6, соответствует уравнению 
Часто одна и та же переменная входит в несколько уравнений Чтобы в структурной схеме иметь возможность использовать какую-либо переменную в качестве входа сразу нескольких звеньев, применяют специализированный элемент — отвод. Это линия, отходящая от основной в какой-либо точке и обозначающая ту же переменную, что и основная линия (см. рис. 1.1, в, где показаны два отвода). Начало отвода отмечается «жирной» точкой.
Если в структурной схеме имеется горизонтальная цепочка звеньев, чередующихся с сумматорами, то обычно знаки «плюс» или «минус» ставят не у всех стрелок, входящих в сумматоры, а только у тех, которые подходят к данной цепочке извне (см., например, три сумматора между переменными 

Пусть система задана некоторым числом алгебраических и дифференциальных уравнений. Чтобы построить по ним структурную схему и М-граф системы, рекомендуется выполнить следующие действия:

При этом выражения 
- По каждому уравнению вида (1.15) изобразить М-граф, для чего:
а) нанести на рисунок вершины, соответствующие переменным 
б) из каждой вершины 


Поскольку правая часть уравнения (1.15) представляет собой алгебраическую сумму, для изображения соответствующей структурной схемы необходим сумматор. В результате получается схема, подобная той, что показана на рис. 11, б Таким образом, если звено имеет один вход, то ему соответствуют структурная схема и М-граф аналогичные тем, что приведены на рис. 1.1, в Нел и же входов несколько, то звену (уравнению) соответствует структурная схема и граф, содержащие несколько звеньев (дуг), причем в структурной схеме обязательно появится сумматор
Уравнения, по которым строится структурная схема или граф, связаны между собой, так как содержат общие переменные Это должно быть ясно отражено и в самой схеме (графе), а именно: в графе не должно быть двух вершин с одинаковыми именами переменных, а в структурной схеме линии, соответствующие одной и той же переменной, должны либо совпадать (так что выход одного звена является входом другого), либо выступать одна по отношению к другой как основная линия и отвод.
Нецелесообразно изображать систему исходных уравнений в виде набора отдельных фрагментов структурной схемы: после этого все равно придется проводить между ними линии связи.
Удобнее рисовать схему (граф) последовательно, используя то обстоятельство, что входными переменными любого звена являются, как правило, выходные переменные других звеньев.
Конечно, входами могут быть и внешние воздействия рассматриваемой системы, т. е независимые переменные, не являющиеся выходами каких-либо звеньев на структурной схеме таким переменным соответствуют стрелки, не исходящие ни из каких звеньев, а в графе — вершины, не имеющие входящих дуг.
В детализированной структурной схеме (ДСС) [3] используются только элементарные звенья — пропорциональные, интегрирующие и дифференцирующие, а также сумматоры. Если для всех передаточных функций системы, связывающих каждый вход с каждым выходом, выполнено условие реализуемости (степень полинома числителя не превышает степени полинома знаменателя), то система может быть описана в виде ДСС, состоящей только из безынерционных (пропорциональных и суммирующих) и интегрирующих звеньев [4]. Для этого рекомендуется пользоваться следующей методикой:
- Представить математическую модель системы
-го порядка в виде совокупности дифференциальных уравнений 1-го порядка (один из способов сделать это состоит в построении гак называемых канонических форм уравнений состояния [3D и, возможно, еще ряда алгебраических уравнений:

Здесь 




Предостережение. Переходя от уравнения (1.17) к уравнению (1.18), не следует приводить подобные члены, содержащие переменную 



- По уравнениям (1.17), (1.18) изобразить ДСС, принимая во внимание, что уравнению (1.18) соответствует схема, показанная на рис 1.2.
Сформулированная методика сохраняет силу и при построении детализированного М-графа. Имеется, однако, тонкость: чтобы графически изобразить 


Пример №1.1.
Записать в самом общем виде уравнение, выражающее зависимость выходной величины у линейной динамической системы от входных величин 

Решение:
Обозначим передаточные функции, связывающие выход с каждым из входов, как 



Пример №1.2.
Определить ПФ системы с одним входом 

Решение:
Производя замену 


после чего переходим в комплексную область:

откуда получается искомая ПФ

Пример №1.3.
По передаточной функции

системы с одним входом и одним выходом записать ее дифференциальное уравнение.
Решение:
Обозначив выходную и входную переменные системы как 


Освобождаясь от дробей и заменяя 





и в классической:

Пример №1.4.
Изобразить структурную схему следящей системы по приведенным ниже уравнениям ее функциональных элементов:
• Элемент сравнения:

где 


• Регулятор и усилительно-преобразовательное устройство:

где 

• Двигатель постоянного тока.

где 






• Редуктор:

где 
Решение:
Структурная схема, построенная по уравнениям (1.19)-(1 26), показана на рис. 1.4. На ней для большей ясности рядом со звеньями написаны номера соответствующих уравнений. Последовательность изображения уравнений может быть, например, следующей: (1.19)-(1.21), (1.24), (1.23), (1.22), (1.25), (1.26).

Графическое изображение уравнений (1.20), (1.22) и (1 24) затруднений не вызывает — это пропорциональные звенья. Наличие разности в правой части уравнения (1.19) указывает на то, что необходим сумматор с двумя входами Во всех дифференциальных уравнениях заменяем 




т. е им будут соответствовать интегрирующие звенья с передачей 



Наибольшую трудность вызывает графическая интерпретация уравнения якорной цепи двигателя (1.21). После замены 
Первый из приведенных вариантов предпочтителен, поскольку в этом случае, во-первых, в структурной схеме будет на одно звено меньше, а во-вторых, последний вариант создает иллюзию того, что порядок системы на единицу выше, чем на самом деле
Замечание. Передаточную функцию

связывающую переменные 


где

Возможно эта страница вам будет полезна:
Пример №1.5.
По уравнению (1.21) изобразить ДОС и детализированный граф.
Решение:
Перепишем (1.21) в форме уравнения (116): 



Заметим, что переменная 

Чтобы изобразить М-граф, нанесем на рисунок вершины для переменных

после чего проведем ребра с соответствующими передачами. Результат показан на рис. 1.5, б.
Полезно сравнить структурную схему и М-граф, соответствующие одному и тому же уравнению. Это, во-первых, поможет читателю в дальнейшем избежать распространенной ошибки — смешивания в одном рисунке элементов структурной схемы и графа, а во-вторых, позволит ему при необходимости легко изобразить по М-графу соответствующую структурную схему, и наоборот.
Анализ структурных схем. Передаточные функции типовых соединений звеньев САУ
Типовыми соединениями звеньев в структурных схемах являются последовательное (рис. 2.1, д), параллельное, или согласно-параллельное (рис. 2.1,6), и соединение с обратной связью, или встречно-параллельное (рис. 2.1, в). Каждое из этих соединений можно рассматривать как одно звено, считая его входной и выходной величинами, соответственно, переменные 


Необходимо твердо усвоить формулы для определения передаточной функции

типового соединения по передаточным функциям звеньев, образующих это соединение:
• Последовательное соединение:

• Параллельное соединение:

(Если какая-либо из переменных 
• Соединение с обратной связью:

В последней формуле необходимо выбирать знак «плюс» в случае отрицательной обратной связи и «минус» — в случае положительной. Отметим, что в этой формуле выражение 
Если структурная схема содержит только типовые соединения, то, как бы сложна ни была эта схема, по ней всегда можно определить передаточную функцию, связывающую заданные переменные, путем последовательного применения формул (2.1)-(2.3). Если же, кроме типовых, есть соединения с более сложной топологией (подробнее об этом см. в 3 1), то необходимо либо использовать теорему Мейсона, рассматриваемую в 2.2, либо применить метод эквивалентных структурных преобразований, излагаемый в 3.1
Теорема Мейсона (Мэзона)
Теорема Мейсона позволяет определить передаточную функцию, связывающую любые две переменные структурной схемы или М-графа. Поскольку первоначально теорема была сформулирована для графов, а затем распространена на структурные схемы, уточним некоторые топологические термины, знание которых необходимо для правильного применения этой теоремы.
Маршрутом в теории графов называют последовательность ребер, в которой соседние ребра инцидентны одной и той же вершине (напомним, что вершина 











Путь — это маршрут без повторяющихся ребер и вершин На рис. 2.2, б последовательность ребер с передачами 


Передачей пути называется произведение передач всех звеньев (в графе — ребер), образующих этот путь, причем необходимо учитывать и знаки, с ко-

торыми переменные данного пути входят в сумматоры, встречающиеся на этом пути. Па рис 2.2, а, б путь между переменными 


Контуром как в графе, так и в структурной схеме называют замкнутый путь. Для графа это означает, что начальная и конечная вершины пути совпадают.
Передача контура — это произведение передач всех звеньев (или ребер), образующих контур, с учетом знаков в сумматорах Например, контур в графе на рис. 1.5, б имеет передачу 
Говорят, что контур не касается другого контура или пути, если он не имеет с ним общих переменных. На рис 2.2, а, б контур с передачей 



Согласно теореме Мейсона, передача, связывающая некоторую «входную» переменную 



Обозначения, использованные в формулах (2.4)-(2.6), имеют следующий смысл: 












Заметим, что два пути или два контура могут частично совпадать; тем не менее, если они различаются хотя бы одним звеном (ребром), то это рахпич-ные пути или контуры.
Решение любой задачи, требующей применения теоремы Мейсона, следует начинать с анализа структурной схемы или М-графа. Если схема сложна, то рекомендуется сначала выписать передачи всех путей, связывающих заданные переменные, и передачи всех контуров, отметив специально «некасающиеся» контуры После этого можно непосредственно записывать искомую передаточную функцию в соответствии с формулами (2 4)-(2.6).
Хотя при определении передаточных функций по теореме Мейсона в качестве входной переменной практически всегда выступает какое-либо внешнее воздействие, ничто не мешает применять эту теорему в ситуации, когда входом является некоторая «внутренняя» переменная структурной схемы. В этом случае надо лишь «усечь» схему, исключив из нее все пути, направленные к указанной входной переменной от заданного выхода и от внешних входных воздействий.
Удобство теоремы Мейсона заключается в возможности быстро записать требуемую передаточную функцию без многократного перерисовывания структурной схемы, что часто бывает необходимо в случае применения альтернативного метода структурных преобразований (см. 3.1) Вместе с тем, с ростом сложности схемы резко возрастает опасность «пропустить» при ее анализе какой-нибудь путь или контур либо не заметить факта «некасания» Поэтому в целом метод структурных преобразований считается более надежным способом определения передаточной функции по структурной схеме
Анализ установившегося режима по структурной схеме при постоянных входных воздействиях
Для исследования динамических систем, в том числе на ЭВМ, бывает важно уметь анализировать установившийся режим при постоянных внешних воздействиях Это можно делать различными способами — например, с помощью алгебраических методов пространства состояний. Здесь мы рассмотрим простой способ, позволяющий определить установившиеся значения всех переменных системы по структурной схеме.
Пусть система асимптотически устойчива (изложение методов анализа устойчивости выходит за рамки данного учебного пособия) Тогда, если все входные (внешние) воздействия постоянны, то с течением времени (теоретически — при 
- Если схема содержит интегрирующее звено, описываемое, как известно, уравнением
, то из
(индекс
служит обозначением установившегося режима) следует, что
. Таким образом, в асимптотически устойчивой системе с постоянными внешними воздействиями входные переменные всех интегрирующих звеньев в установитиемся режиме равны нулю.
2 Если в схеме имеется дифференцирующее звено, описываемое уравнением 


Большинство звеньев структурной схемы — это позиционные звенья, описываемые передаточными функциями (1.5), (I 10), (1 12) и (I 13), причем в трех последних в общем случае присутствует коэффициент передачи 
Коэффициент передачи к звена (системы) может быть определен двояко:
а) 


б) 
Последнее выражение — это одновременно и практический способ определения коэффициента передачи.
Общим свойством позиционных звеньев является то, что при подаче на вход такого звена постоянной величины на его выходе с течением времени также устанавливается постоянное значение. ПФ позиционного звена в установившемся режиме вырождается в коэффициент передачи 


Консервативное звено с ПФ (1.14) также относится к позиционным, но, в отличие от остальных, не является асимптотически устойчивым. При наличии в схеме консервативного звена (или эквивалентного ему встречно-параллельного соединения интегрирующего звена 2-го порядка и пропорционального звена) в системе в установившемся режиме будут наблюдаться незатухающие колебания, т. е. по крайней мере некоторые переменные будут изменяться по гармоническому закону. Анализ такого установившегося режима выходит за рамки излагаемого здесь метода.
В заключение отметим, что отводы по переменным, установившиеся значения которых равны нулю, при анализе установившегося режима можно не учитывать.
Возможно эта страница вам будет полезна:
Пример №2.1.
По структурной схеме (рис 2.3, а) определить передаточные функции 



Решение:
Сначала найдем ПФ 








согласно-параллельное соединение; в соответствии с формулой (2.2) его 







Для сравнения получим искомую ПФ иначе — с помощью теоремы Мейсона. От 






что, разумеется, совпадает с ранее полученным выражением.
Чтобы найти ПФ 












Окончательно получаем:

До сих пор на структурных схемах выходная величина всегда изображалась стрелкой, заканчивающей горизонтальную цепочку звеньев, берущую начало от места приложения задающего воздействия. Если же в качестве выхода рассматривается какая-либо «внутренняя» переменная (в данной задаче — 









обратной —

на рис. 2.3, в прямая связь имеет передачу — 
С учетом сказанного, легко записать искомые ПФ

Обращаем внимание читателя на то, что все четыре найденные передаточные функции имеют, как это всегда и должно быть, одинаковые знаменатели.
Чтобы найти ПФ 

Пример №2.2.
С помощью теоремы Мейсона по структурной схеме или М-графу, изображенным на рис. 2.2, а и б, определить передаточные функции 




Решение:
Определим ПФ 








При нахождении 





Пример №2.3.
С помощью теоремы Мейсона определить передачу между переменными 

Решение:
В схеме только один контур, но четыре пути: с передачами, соответственно, 



Возможно эта страница вам будет полезна:
Преобразование структурных схем. Эквивалентные структурные преобразования
Если в структурной схеме имеются не только типовые соединения звеньев (см. 2.1), но и другие, более сложные, то при необходимости определить передаточную функцию, связывающую заданные переменные, можно поступить различным образом: воспользоваться теоремой Мейсона (о ее достоинствах и недостатках было сказано ранее) либо применить метод эквивалентных преобразований структурных схем (короче — метод структурных преобразований), излагаемый далее. Этот метод, как показывает практика преподавания, не так легок для начального освоения, как теорема Мейсона, и даже может показаться громоздким, но в действительности после приобретения необходимых навыков становится удобным, эффективным и надежным инструментом анализа систем. Знание этого метода обязательно для специалиста в области автоматического управления. Рассмотрим сущность метода эквивалентных структурных преобразований.
Обычно в схеме можно выделить две части, не обязательно компактные одна состоит только из типовых соединений, к которым, следовательно, сразу могут быть применены формулы (2 1)—(2.3) для определения передаточных функций, другая же — назовем ее преобразуемой частью — содержит различного рода нетиповые соединения звеньев. В чем особенность таких соединений, и почему они являются предметом специального рассмотрения0
На рис 3.1, а показана структурная схема, в которой вообще нет типовых соединений. Если бы в этой схеме отсутствоват отвод «*» (конечно, вместе с сумматором 



Возникает вопрос: нельзя ли заменить эту схему другой так, чтобы ее передаточная функция не изменилась, но отвод «*» шел не с выхода звена с передачей 

соединения, а передаточная функция, связывающая переменные 

Приведение схемы к типовому виду осуществляется выполнением некоторого количества операций преобразования. После выполнения любой из этих операций новая схема должна в определенном смысле быть эквивалентна предыдущей Пусть та часть (фрагмент) структурной схемы, над которой совершается операция преобразования, имеет 




связывающих каждый вход 

В табл. 3.1 приведены правила, по которым выполняются структурные преобразования. Подавляющее большинство приведенных здесь операций -это различного рода перестановки: звеньев, сумматоров и отводов. Для пояснения каждой операции в соответствующей горизонтальной графе показаны две схемы: исходная и эквивалентная ей преобразованная Однако как раз в силу эквивалентности всех преобразований каждую пару схем можно просматривать и в обратном порядке, считая эквивалентную схему исходной Например, операция 3 носит двойственный характер: сумматоры можно объединять и, наоборот, разделять.
При начальном изучении табл. 3.1 полезно убедиться в корректности каждой операции. Для этого рекомендуется проверить совпадение передаточных функций, связывающих каждый вход с каждым выходом в исходной

и эквивалентной схемах. Чтобы получить требуемую ПФ, необходимо просто «пройти» вдоль пути, связывающего данный вход с данным выходом, перемножая передачи всех звеньев этого пути и учитывая знаки в сумматорах. Можно поступить и иначе, в обеих схемах для каждой выходной переменной записать уравнение, описывающее зависимость этой переменной от всех входных переменных, после чего сравнить эти уравнения.
Особо подчеркнем следующее обстоятельство: приведенные в табл 3.1 правила выполнения операций не предназначены для запоминания. Необходимо просто понять логику построения эквивалентной схемы по имеющейся исходной и всякий раз при решении конкретной задачи поступать аналогично.
Рассмотрим теперь правила выполнения отдельных операций Все множество приведенных в табл. 3.1 операций можно условно разделить на три группы Первую из них составляют простейшие операции 1-4, которые вряд ли нуждаются в пояснениях.
Группу основных операций составляют операции 5-7. Именно они являются главным инструментом преобразования структурных схем. Рассмотрим перестановку звена и сумматора — например, в случае, когда сумматор стоит перед звеном (в табл. 3.1 — операция 5, вариант а). Если просто поменять местами сумматор и звено с передачей 






Аналогично рассуждаем при обосновании правила перестановки звена и отвода. Рассмотрим операцию 6, вариант а. Просто поменять местами звено и отвод нельзя: в этом случае отвод будет по переменной 



Перестановка сумматора и отвода — наиболее сложная из операций преобразования структурных схем, и ее по возможности следует избегать. Здесь тоже есть два варианта взаимного расположения переставляемых элементов (варианты а и б операции 7 в табл. 3.1) В связи с этим следует со всей определенностью сказать, что объективная необходимость в выполнении перестановки по варианту б встречается крайне редко Бели при анализе конкретной схемы выясняется, что без перестановки сумматора и отвода обойтись нельзя, то необходимо, прежде всего, искать возможность выполнить перестановку по варианту а, такая возможность, скорее всего, существует.
Обращаем внимание на то, что, согласно правилу выполнения данной операции, в эквивалентной схеме вместо отвода по переменной 


Однако, оказывается, перестановку сумматора и отвода можно выполнить гораздо более простым способом, исключающим появление дополнительного сумматора, а значит, и не требующим последующих операций по упрощению схемы. Суть этого способа (отразить его в табл. 3.1 не представляется возможным) состоит в следующем. В исходной системе отвод по переменной у, или в данном случае удобнее сказать — сама переменная 







Последнюю группу в табл. 3.1 составляют операции 8-10, которые можно назвать вспомогательными. Справедливость операций 8^и 10 очевидна, при этом заметим, что величины 

В чем польза трех последних операций? Рассмотрим более внимательно операцию 9. Ее смысл заключается в возможности выноса общей передачи из нескольких суммирующихся каналов (имеются в виду линии, входящие в сумматор) в канон за сумматором. Очевидно, что это упрощает схему, особенно если число входящих в сумматор каналов велико. Однако, возможно, еще большая польза этой операции состоит в другом. Если, наоборот, эквивалентную схему принять за исходную, то операция 9 трактуется по-другому: передачу звена, расположенного за сумматором, можно поместить в каждый из суммирующихся каналов Это позволяет иначе взглятть на уже рассмотренную операцию 5 перестановки звена и сумматора (в варианте а). Очевидно, что она полностью совпадает с операцией 9, и, следовательно, если в схеме последовательно расположены сумматор и звено, то операцию 5 над ними можно трактовать уже не как взаимную перестановку, а как «ввод» звена в каждый из каналов — это правило легко запоминается учащимися
Аналогично обстоит дело с операцией 10. Если рассматривать приведенную в табл 3.1 пару схем слева направо, то правило звучит так: общую передачу всех связей, отходящих от точки разветвления, можно внести в связь перед этой точкой. Рассматривая эти же схемы в обратном порядке, можно прийти к следующему выводу: передачу звена, стоящего до точки разветвления, можно внести во все отходящие от этой точки связи. Знание этого правила позволяет, не задумываясь, выполнять операцию 6 перестановки звена и отвода (вариант а).
Операция 8 удобна тем, что позволяет искусственно создать в какой-либо связи звено с требуемой передачей — чтобы получить возможность вынести эту передачу из двух или более связей, т. е. выполнить операцию 9 или 10.
В заключение укажем на еще одно правило, которое бывает полезно при упрощении схем и выполнении других процедур их преобразования к заданному виду: уравнения, описывающие систему, не изменятся, если в структурной схеме у всех переменных, связанных с каким-либо сумматором, изменить знак на противоположный. Другими словами, можно изменить знаки у всех стрелок, входящих в сумматор, и поставить звено с передачей -1 в связь, выходящую из сумматора. Эта операция, по существу, является частным случаем операции 9 при 
Знание правил структурных преобразований не дает, однако, ответа на вопрос, в каком порядке следует преобразовывать схему к типовому виду при решении конкретной задачи. Ответить определенно на него невозможно, поскольку задачи такого типа решаются, как правило, не единственным образом То, какие именно операции и в какой последовательности будут использованы, зависит как от многообразия вариантов решения, так и от опыта и, не в последнюю очередь, от личных предпочтений специалиста, выполняющего структурные преобразования. Нет нужды доказывать, что при наличии нескольких возможных алгоритмов решения задачи необходимо выбирать наиболее простой.
Несмотря на сказанное, некоторые общие рекомендации относительно алгоритма преобразования структурных схем все же можно дать. Прежде всего, необходимо каждое имеющееся в схеме типовое соединение звеньев заменить эквивалентным звеном, снабдив его обозначением соответствующей передаточной функции. Затем целесообразно выполнить операции перестановки звена и отвода или/и звена и сумматора (как уже указывалось, операцию перестановки сумматора и отвода без необходимости применять не следует), чтобы в результате образовались новые типовые соединения. Их нужно опять заменить эквивалентными звеньями и т. д. Рекомендуется после каждого этапа преобразований перерисовывать схему с новыми обозначениями.
Возможно эта страница вам будет полезна:
Операция инверсии
Полезным видом структурно-топологических преобразований является операция инверсии. Ее применяют
- а) для приведения структурной схемы к виду, удобному для цифрового и аналогового моделирования, путем устранения дифференцирующих звеньев,
- б) при анализе установившихся режимов для устранения некорректности типа деления на ноль (в передаточных функциях вида /р при р-> 0),
- в) для получения из схемы общего вида некоторых частных структурных схем путем предельного перехода при стремлении какого-либо параметра к бесконечности или к нулю.
Различают инверсию пути и контура. Главной чертой этих операций является изменение направления пути (контура) на противоположное
Рассмотрим операцию инверсии пути. Чтобы излагаемое далее правило было более понятно, проиллюстрируем его примером. Пусть требуется про-инвертировать путь между переменными 




Для рассматриваемого примера результат инверсии показан па рис 3.2, а. Сравнение этой схемы с исходной позволяет лучше усвоить излагаемое далее правило инверсии пути.
Чтобы проинвертировать некоторый путь между двумя переменными структурной схемы, необходимо изменить:
1) направление пути на противоположное;
2) передачи всех звеньев этого пути — на обратные;
3) знаки всех воздействий, подходящих к данному пути, — на противоположные.

Это правило можно рассматривать как алгоритм выполнения данной операции. На первом этапе следует перерисовать схему, изменив направления всех стрелок рассматриваемого пути (и только его!) и пока воздержавшись от записи передач внутри графических изображений звеньев. Далее необходимо записать эти передачи как обратные исходным, причем, если на инвертируемом пути встречаются сумматор и принадлежащая этому же пути стрелка, входящая в сумматор со знаком «минус», то последний следует интерпретировать как звено с передачей -1. В заключение меняют на противоположные знаки, с которыми к рассматриваемому пути подходят (в сумматорах) внешние воздействия, в том числе воздействия от остальной части схемы.
Заметим, что с математической точки зрения инверсия пути соответствует разрешению алгебраического уравнения, описывающего данный путь, относительно новой переменной.
Так, в рассмотренном примере исходной и преобразованной схемам соответствуют следующие два варианта одного и того же уравнения:

Инверсия контура в практическом плане является наиболее важной из двух рассматриваемых здесь операций. Именно она является инструментом решения задач, перечисленных в начале раздела.
Чтобы проинвертировать некоторый контур структурной схемы, необходимо:
1) любой сумматор этого контура принять за опорный (обозначим его 




2) направление контура изменить на противоположное; в результате этого прямая связь становится обратной, а обратная — прямой;
3) передачи всех звеньев контура изменить на обратные (как-уже пояснялось, знаки «минус» при входящих в сумматоры стрелках данного контура тоже необходимо рассматривать как звенья этого контура, имеющие передачу -1);
4) знаки прямой и обратной связей изменить на противоположные, вставив звено с передачей -1 непосредственно у опорного сумматора;
5) знаки всех воздействий, подходящих к данному контуру извне, за исключением воздействий, приложенных к опорному сумматору, заменить на противоположные.
Применение этого правила проиллюстрируем на примере контура, изображенного на рис. 3.2, б Рассмотрим два варианта назначения опорного сумматора (приводящие, таким образом, к двум вариантам решения) — они обозначены на схеме как 






Пусть опорным является сумматор 




Теперь рассмотрим вариант с опорным сумматором 



Хотя выбор различных опорных сумматоров привел к различным структурным схемам, эти схемы легко получаются одна из другой изменением знаков всех переменных в сумматорах 

Если требуется привести структурную схему к виду, удобному для моделирования, путем устранения имеющихся в ней дифференцирующих звеньев, то эту задачу можно решить с помощью операции инверсии контура в том случае, если инвертируемый контур не содержит интегрирующих звеньев. В противном случае при замене передач звеньев кон тура на обратные интегрирующие звенья превратятся в дифференцирующие. В такой ситуации делу могут помочь структурные преобразования, а в сложных случаях — применение методов пространства состояний (канонических форм, которые всегда приводят к структурным схемам без дифференциаторов [3]).
Пример №3.1.
По структурной схеме, изображенной на рис 3.1, а, определить передаточную функцию, связывающую переменные 




Решение:
На рис. 3.1,6 показан результат решения задачи первым способом. Чтобы получить его, необходимо сначала перерисовать без каких-либо изменений ту часть схемы, которая не подвергается операции преобразования. В данном случае это вся схема за исключением отвода «». Специально обращаем внимание на то, что звено с передачей 








Для решения вторым способом удобно воспользоваться операцией 9 (см. табл. 3.1): убрав звено с передачей 



Пример №3.2.
По схеме, изображенной на рис. 2.2, г, определить передаточную функцию от и к у методом структурных преобразований
Решение:
Данная схема является примером случая, когда нельзя обойтись без операции перестановки сумматора и отвода Наиболее быстро задача решается взаимной перестановкой первого (слева) сумматора и отвода по переменной 






















между переменными 


Это выражение после упрощения совпадает с найденным в задаче 2.3
Пример №3.3.
По структурным схемам, приведенным на рис. 2.2, а и в, определить методом структурных преобразований передаточные функции 




Решение:
Главную трудность при нахождении ПФ 








Одновременно сделаем перестановку крайнего левого сумматора и звена с передачей 











что после подстановки выражения для 
Преобразования схемы на рис. 2.2, в, необходимые для нахождения ПФ 





что совпадает с ПФ в задаче 2.2.

Пример №3.4.
Выполнить инверсию контура 
Решение:
Примем левый сумматор за опорный, а переменную 







Полезно убедиться, что передаточная функция системы после инверсии не изменилась.
Пример №3.5.
В структурной схеме, изображенной на рис. 2.1, в, с помощью эквивалентных структурных преобразований сделать обратную связь единичной.
Решение:
Задача предназначена для самостоятельного решения Рекомендуется использовать операции 8 и 10 из табл. 3.1.
Пример №3.6.
На рис. 3.7, а показана упрошенная структурная схема системы автоматического регулирования скорости электродвигателя постоянного тока, соединенного с рабочим механизмом упругой механической связью, имеющей жесткость с. Требуется с помощью операции инверсии контура: а) получить частную схему для случая жесткой связи двигателя с механизмом 


Пояснение Кроме названных, в схеме имеются следующие переменные: 







Решение:
Проинвертируем контур, содержащий звенья с передачами 









тельной обратной связью, передача которого есть 

Чтобы решить вторую часть задачи, выполним инверсию полученного контура (ввиду простоты эту операцию не поясняем). Для перехода к схеме установившегося режима достаточно заменить обозначения переменных на установившиеся значения и принять 


Пример №3.7.
Структурную схему, изображенную на рис. 3.8, привести к виду, удобному для моделирования, устранив дифференцирующее звено.

Решение:
Задача решается путем переноса отвода, идущего на вход звена с передачей 
Построение и анализ логарифмических частотных характеристик. Логарифмические частотные характеристики
Математический аппарат частотных характеристик, в особенности — логарифмических частотных характеристик, является весьма эффективным инструментом анализа и синтеза автоматических систем, даже несмотря на наличие мощных методов так называемой «современной теории управления» (методов пространства состояний, вход-выходного подхода и др.) и огромные возможности вычислительной техники. Частотные характеристики благодаря сочетанию строгости, простоты, наглядности и информативности не только являются удобным средством в руках инженера и исследователя, но и, после приобретения достаточного опыта, вырабатывают у специалиста интуицию, необходимую для приближенной оценки динамических свойств систем и поиска методов их улучшения.
Как известно, частотная передаточная функция (ЧПФ) 





то функции

и

называются, соответственно, амплитудной (АЧХ) и фазовой (ФЧХ) частотными характеристиками. Если же ЧПФ представлена в алгебраической форме

то функции

и

называются, соответственно, вещественной (ВЧХ) и мнимой (МЧХ) частотными характеристиками.
Чтобы построить АФХ, необходимо
1) записать аналитические выражения для 

2) задавая некоторые характерные значения 







3) задав на комплексной плоскости систему координатных осей 
Функция

называется логарифмической амплитудной частотной характеристикой (ЛAX) и графически изображается как функция частоты 


Любой интервал частот 


На рис. 4.1 изображена система координат, которой пользуются при построении ЛЧХ. На ней показан пример оцифровки осей, причем для оси абсцисс даны два варианта оцифровки, используемые в литературе: снизу от оси — для 



Необходимо уметь правильно отмечать на оси абсцисс точки, соответствующие конкретным значениям частоты. Пусть, например, требуется нанести на ось частот две точки: 2 







Также необходимо уметь строить в принятом масштабе наклонные участки асимптотических ЛАХ, т е. отрезки прямых, имеющих стандартные коэффициенты наклона Например, чтобы через данную точку провести прямую, имеющую коэффициент наклона -20 дБ/дек, следует найти вторую точку, отстоящую от заданной на 1 декаду вправо и на 20 дБ вниз (либо, наоборот, на 1 декаду влево и на 20 дБ вверх), после чего соединить обе точки отрезком прямой. Коэффициенты наклона 0, ±20 дБ/дек, ±40 дБ/дек… сокращенно обозначают 0, ±1, ±2 . ..
При изучении теории автоматического управления обязательным является знание логарифмических частотных характеристик типовых звеньев САУ, перечисленных в 1.1. Этот материал можно найти в любом учебнике по теории автоматического управления Здесь мы, не приводя графиков ЛЧХ типовых звеньев, отметим их существенные особенности, знание которых облегчает усвоение этого материала.
Общей чертой трех типов звеньев — пропориионального с ПФ (1 5), интегрирующего и дифференцирующего (произвольного порядка), описываемых передаточными функциями (1.7) и (1.9), — является то, что для них как ЛАХ, так и ЛФХ представляют собой прямые При этом ЛАХ пропорционального звена — горизонтальная прямая с ординатой 20 





Каждая из этих точек соответствует своей, одной из двух форм записи передаточных функций (1.7) и (1.9) — с использованием коэффициента 



С остальными из перечисленных в 1.1 типовых звеньев дело обстоит сложнее. Для каждого из них различают два вида ЛАХ — точную, описываемую выражением (4.1), и асимптотическую. При компьютерном моделировании САУ с помощью специализированных математических пакетов, например Control System Toolbox системы Matlab, мы имеем возможность рассчитывать и видеть на экране график именно точной ЛАХ исследуемой системы. Однако в практике предварительного инженерного анализа систем и оценки вариантов закона управления обычно имеют дело с асимптотическими ЛАХ, широкое применение которых объясняется простотой их построения даже для весьма сложных систем и богатством заключенной в них информации.
Асимптотическая логарифмическая амплитудная частотная характеристика — это ломаная, отрезки которой являются асимптотами для точной ЛАХ. Для звеньев, описываемых передаточными функциями (1.10), (1.11), (1 13) и (1 14) (апериодическое звено 2-го порядка мы исключаем из рассмотрения, поскольку оно заменяется последовательным соединением двух апериодических звеньев 1-го порядка), асимптотическая ЛАХ состоит из двух асимптот: низкочастотной (к ней точная ЛАХ приближается при 






Фазовые характеристики трех звеньев графически представляют собой плавные кривые; они являются следующими функциями частоты: 





Заметам, что передаточные функции (1 10) и (1.11) апериодического и форсирующего звеньев являются взаимно обратными. Как следствие, их ЛЧХ симметричны друг другу относительно оси частот. То же самое можно сказать об ЛЧХ дифференцирующего и интегрирующего звеньев. В связи с этим набор «типовых» передаточных функций можно расширить, введя в него функции, обратные передаточным функциям (1 13) и (1 14) колебательного и консервативного звеньев. Соответственно, ЛЧХ таких звеньев будут зеркальным отображением ЛЧХ указанных звеньев. Такой расширенный набор позволяет почти любую передаточную функцию, не являющуюся типовой, представить в виде произведения типовых передаточных функций
В процессе анализа САУ часто возникает необходимость в построении ЛЧХ систем с довольно сложной структурой Будем предполагать, что структурная схема системы уже преобразована так, что содержит только типовые соединения Следовательно, возникает задача построения ЛЧХ типовых соединений звеньев по известным ЛЧХ самих этих звеньев
Рассмотрим последовательное соединение Основной результат состоит в том, что как ЛАХ, так и ЛФХ последовательного соединения звеньев могут быть получены суммированием соответствующих характеристик звеньев, образующих это соединение (уточним, что нас интересует, главным образом, графическое сложение частотных характеристик). Это позволяет сравнительно легко строить ЛЧХ длинных цепочек звеньев
На данный результат можно посмотреть и с другой стороны. Среди звеньев структурной схемы могут оказаться и такие, передаточные функции которых не совпадают ни с одной из рассмотренных ранее передаточных функций типовых звеньев. Однако в большинстве случаев такая «сложная» передаточная функция всегда может быть представлена в виде произведения типовых передаточных функций, а значит, ее можно рассматривать как ПФ последовательного соединения типовых звеньев, что позволяет строить ЛЧХ по такой ПФ суммированием «типовых» составляющих.
Несмотря на ясность изложенного подхода, необходимо сделать существенную оговорку. Основные преимущества метода ЛЧХ связаны, в первую очередь, с простотой ручного построения асимптотических ЛАХ типовых звеньев САУ и, как следствие, систем в целом (мы говорим именно о ручном построении как основе предварительных, прикидочных расчетов автоматических систем; впрочем, очень часто расчеты, выполненные с помощью ЛЧХ, являются весьма точными). В отличие от асимптотических ЛАХ, которые можно строить вполне точно с соблюдением необходимых масштабов, фазовые характеристики большинства даже типовых звеньев и тем более их последовательных соединений могут быть построены вручную только эскизно, поскольку описываются не очень простыми выражениями. Если бы оказалось, что для анализа каких-либо свойств системы необходимо точное построение ее ЛФХ, то это свело бы на нет преимущества использования аппарата асимптотических ЛАХ. К счастью, большинство систем, с которыми приходится иметь дело, относятся к так называемым минимально-фазовым системам, для которых существует однозначная связь между амплитудной и фазовой частотными характеристиками и, следовательно, можно обойтись построением только ЛАХ — если, конечно, имеется возможность на любом этапе расчета восстановить (в случае необходимости) ЛФХ по имеющейся ЛАХ или хотя бы оценить значение фазы в любой точке ЛАХ (подробно об этом говорится в 4 2).
Таким образом, наибольшее значение для практики анапиза и синтеза автоматических систем имеет построение асимптотических ЛАХ типовых соединений звеньев. Для последовательного соединения или, что равнозначно, для передаточной функции сложного вида результирующая ЛАХ может быть найдена, как уже было сказано, простым суммированием составляющих, соответствующих передаточным функциям отдельных звеньев или сомножителям сложной передаточной функции. Однако на практике этот способ применяется редко. Более эффективной является специальная методика, позволяющая строить результирующую ЛАХ по передаточной функции сложного вида без предварительного изображения отдельных составляющих. Методика базируется том факте, что ЛАХ пропорционального, интегрирующего и дифференцирующего звеньев являются бесконечными прямыми и, следовательно, вносят свой вклад в результирующую ЛАХ во всем диапазоне частот, в то время как влияние асимптотических ЛАХ звеньев других типов начинается только с соответствующей частоты сопряжения (если рассматривать весь частотный диапазон слева направо), поскольку их низкочастотные асимптоты, если полагать коэффициент передачи этих звеньев равным единице, совпадают с осью абсцисс.
Пусть передаточная функция имеет следующий вид (или приведена к таковому):

где функция 

a 


где

так что

(Если в исходной передаточной функции есть сомножители, имеющие вид полинома второй степени

то они приводятся к виду

или


в зависимости от того, являются корни полинома вещественными или комплексными. Вместо нахождения корней полинома последний можно формально представить в виде

тогда, если 



Чтобы по передаточной функции (4.2) построить асимптотическую ЛАХ, необходимо выполнить следующие действия:
На оси абсцисс отметить точки, соответствующие сопрягающим частотам 



Начать построение ЛАХ (оно ведется слева направо, от низких частот к более высоким) с участка, представляющего собой ЛАХ передаточной функции 

Далее на частотах 







Чтобы выполнить эскизное построение результирующей ЛФХ по передаточной функции (4.2), необходимо представить последнюю в виде произведения типовых передаточных функций расширенного набора, т. е. (1.5)-(1.11), (1.13), (1.14) и функций, обратных (1.13) и (1.14), затем построить ЛФХ для каждого сомножителя, после чего сложить их. Чтобы в процессе сложения избежать грубых ошибок, полезно знать правило интегральной проверки правильности построения ЛФХ: начальное и конечное значения результирующей ЛФХ равны, соответственно, 90°



Перейдем к рассмотрению правил приближенною построения ЛЧХ параллельных соединений (точное их построение может быть сделано на компьютере, но необходимость в этом возникает редко). Обоснование этих правил — оно весьма простое — можно найти в [5].
Чтобы построить асимптотическую ЛАХ согласно-параллельного соединения двух звеньев, необходимо построить ЛАХ для каждого звена, после чего провести результирующую ЛАХ как объединение всех верхних участков исходных ЛАХ (на каждой частоте верхним мы называем участок с большей ординатой).
Для построения асимптотической ЛАХ встречно-параллельного соединения (с отрицательной обратной связью) звеньев с передаточными функциями 



По построенной ЛАХ всегда можно качественно построить соответствующую ЛФХ методом, изложенным в 4.2 Интересно, что фазовые характеристики исходных звеньев (точнее, 



Приведенные правила построения ЛАХ параллельных соединений звеньев нельзя применять к соединениям, способным приводить к образованию эквивалентных неминимально-фазовых звеньев. В особенности это касается соединения с положительной обратной связью и согласно-параллельного соединения с вычитанием передач. Не рекомендуется пользоваться данным методом (или, по крайней мере, следует соблюдать осторожность) в тех случаях, когда известно, что точная ЛАХ хотя бы одного из двух звеньев, образующих параллельное соединение, имеет резонансный всплеск.
Кстати готовые задачи на продажу по ТАУ тут.
Определение значений ЛФХ но ЛАХ минимально-фазовой системы
Минимально-фазовой (МФ) называется система, передаточная функция которой не имеет ни нулей, ни полюсов в правой полуплоскости. В противном случае система называется неминимально-фазовой (НМФ). Передаточная функция МФ-системы представима в виде, определяемом выражениями (4 2}-(4.5), поскольку корни полиномов от переменной 

имеют неотрицательные вещественные части. Если ПФ имеет вид дробно-рациональной функции, т. е. отношения двух полиномов, го вопрос о том, является ли система минимально-фазовой, может быть решен путем анализа устойчивости обоих полиномов (эти вопросы здесь не рассматриваются). Например, полином

устойчив (что можно определить хотя бы по критерию Гурвица), имеет трехкратный вещественный корень 



откуда видно, что имеются два комплексных корня в правой полуплоскости.
Важнейшим свойством МФ-системы является однозначность связи между ее АЧХ (или ЛAX) и ФЧХ (ЛФХ). Известно, что две системы — минимально-фазовая и неминимально-фазовая — могут иметь одинаковые ЛАХ, но различные ЛФХ, причем МФ-система на любой частоте имеет наименьшее по модулю значение ЛФХ Для МФ-системы по ЛАХ всегда можно (по крайней мере, в принципе) восстановить ЛФХ, а также ПФ.
Если задана асимптотическая ЛАХ МФ-системы, то задача построения по ней ЛФХ решается согласно следующему алгоритму:
1) необходимо представить данную ЛАХ как сумму ЛАХ некоторого числа типовых звеньев САУ;
2)для каждого типового звена построить соответствующую ЛФХ (мы имеем в виду эскизное построение, хотя, конечно, возможно и точное);
3) сложить эти типовые ЛФХ.
Если же требуется по ЛАХ определить передаточную функцию, то, начиная со 2-го шага, алгоритм меняется:
2) для каждого типового звена следует записать в общем (буквенном) виде его ПФ;
3)по ЛАХ каждого типового звена или, если потребуется, по заданной исходной ЛАХ определить численные значения параметров передаточной функции этого типового звена;
4) перемножить найденные типовые передаточные функции.
При выполнении третьего этапа этого алгоритма часто оказывается полезной формула, выражающая зависимость разности ординат 



В этой формуле можно не учитывать знак 

Эскизное построение ЛФХ по ЛАХ МФ-системы требуется довольно редко — в основном, при исследовании устойчивости по критерию Найквиста в процессе синтеза системы, выполняемого целиком на основе ЛАХ Гораздо чаще бывает необходимо уметь определять значение ЛФХ в отдельной точке ЛАХ Кроме анализа устойчивости по критерию Найквиста (в основном, в частном случае устойчивой в разомкнутом состоянии системы с монотонной ЛАХ, когда требуется оценить значение фазы на частоте среза), такая задача возникает при анализе качества системы в процессе графического синтеза корректирующего устройства. Говоря конкретно, многие методики синтеза желаемой ЛАХ предусматривают контроль значений ЛФХ в характерных точках ЛАХ; кроме того, при синтезе параллельной коррекции следует контролировать запас устойчивости (по фазе) внутреннего контура системы. Иногда требуется оценка значений ЛФХ в выбранных точках ЛАХ, экспериментально снятой на реальном объекте управления
Существует удобная эмпирическая формула, позволяющая приблизительно оценить значение фазы на определенной частоте 

где 

Отметим особенности этого метода
Формула (4.7) при всей своей простоте дает абсолютно точный результат, если ЛАХ имеет вид прямой с постоянным наклоном Например, для интегрирующего звена для любой частоты 





2 Если наклоны каких-либо соседних участков различаются на 40 дБ/дек или более, то важно знать, обусловлено это наличием колебательного (или «обратного» колебательному) звена или нет. При положительном ответе к оценкам, получаемым по формуле (4.7), следует относиться с большой осторожностью, поскольку погрешность метода в этом случае может оказаться значительной.
- Рискнем утверждать, что в большинстве практических ситуаций погрешность оценивания фазы по формуле (4.7) лежит в пределах 5—15° В связи с этим не рекомендуется применять данный метод для анализа устойчивости систем по критерию Найквиста в тех случаях, когда оцененное значение ЛФХ (разомкнутой системы) на частоте среза отличается от значения -180° менее чем на 15°, поскольку в зависимости от того, насколько велика фактическая погрешность определения фазы, результат анализа может оказаться принципиально разным.
В заключение остановимся на особенностях построения частотных характеристик неминимально-фазовых систем. Пусть задана передаточная функция НМФ-системы. Чтобы эскизно построить по ней АФХ, необходимо придерживаться изложенного в 4.1 алгоритма, одинакового для МФ- и НМФ-систсм
Если по передаточной функции НМФ-системы требуется построить логарифмические частотные характеристики, то рекомендуется действовать согласно следующему алгоритму:
Дальнейшие шаги алгоритма относятся к эскизному построению ЛФХ.

Пример №4.1.
Построить ЛАХ по передаточной функции

Решение:
Приведем передаточную функцию (4.8) к виду (4.2). Для выполнения условия 



Сравнивая ее с выражениями (4.2)-(4.5), заключаем, что в данном случае

Определим частоты сопряжения ЛАХ. Их значения являются обратными по отношению к постоянным времени в выражениях для 


(частоты пронумерованы в порядке возрастания их значений). Нанесем соответствующие точки на ось абсцисс (для определения их положения вычисляем: 
Построение ЛАХ, согласно изложенной в 4.1 методике, начинаем с участка, представляющего собой ЛАХ пропорционального звена с передачей 








Пример №4.2.
В одной системе координатных осей построить логарифмические амплитудные частотные характеристики, соответствующие передаточным функциям

Решение:
Заданные передаточные функции являются частными случаями передаточной функции обобщенного интегрирующего звена, представленной в форме 



Коэффициенты наклона этих ЛАХ составляют, соответственно, -20,-40 и -60дБ/дек (сокращенно -1,-2 и-3).
Пример №4.3.
Построить логарифмические частотные характеристики по передаточной функции

для двух значений постоянной времени 
Решение:
Пусть 

Единственная сопрягающая частота находится как 








Чтобы построить ЛФХ, представим исходную ПФ как произведение двух передаточных функций: интегрирующего 





Построение ЛЧХ при 
Пример №4.4.
Определить частоту среза 
Решение:
Задачу можно решить несколькими способами. По-видимому, наиболее удобен следующий На рис 43 имеются два прямоугольных треугольника с общим катетом длиной 








где

Отсюда

что дает

Другой возможный способ решения: поскольку

а перепад ЛАХ на интервале частот 

далее из уравнения 

Определить значение ЛФХ на частоте 

откуда

Однако наиболее общий, универсальный способ основан на применении формулы (4.7). Поскольку ЛАХ состоит из двух участков, то перепад ординат на интервале частот 
перепада 






Тогда


(как видим, сумма 
Учитывая, что коэффициенты наклона 1-го и 2-го участков ЛАХ составляют, соответственно, -20 и —40 дБ/дек, находим:


Следовательно


откуда

что близко к точному значению.
Пример №4.5.
Используя методику приближенного построения ЛАХ встречно-параллельного соединения звеньев, построить результирующую ЛАХ соединения с отрицательной обратной связью, в котором передаточные функции прямой и обратной связей равны, соответственно,

и

По результирующей ЛАХ записать приближенное выражение передаточной функции указанного соединения.
Решение:
На рис. 4 4 показаны логарифмические амплитудные частотные характеристики 








Построенной ЛАХ соответствует передаточная функция вида

уравнения

находим 




где 



откуда 

Интересно сравнить его с точным выражением

Пример №4.6
Определить передаточную функцию минимально-фазовой системы по ее ЛАХ, изображенной на рис 4.5

Решение:
Представим заданную ЛАХ как сумму двух составляющих, соответствующих типовым звеньям. Они изображены на рис. 4.5 штриховыми линиями и обозначены 


Теперь необходимо найти значения параметров этих функций Значение к определяется по ординате характерной точки ЛАХ 





Удобно переписать это уравнение следующим образом:

откуда


Следовательно,

поэтому искомая передаточная функция определяется выражением

Пример №4.7.
Построить АФХ и ЛЧХ по передаточной функции

Решение:
Наличие полюса 


Умножив числитель и знаменатель на функцию, комплексно сопряженную функции, стоящей в знаменателе, представим ЧПФ в алгебраической форме

где

Чтобы построить эскиз АФХ, необходимо вычислить 









Поскольку знаменатель передаточной функции разлагается на сомножители порядка не выше второго, то, в соответствии с методикой, изложенной в 4.2, построение ЛАХ выполняем, игнорируя минус в знаменателе График ЛАХ 


Первая их них — типовая ПФ МФ-звена; соответствующая ЛФХ обозначена на рис 4.6, б как 








Большая Энциклопедия Нефти и Газа
Динамическая ошибка представляет собой дополнительное рассогласование между входной и выходной величинами, появляющееся при движении следящей системы. Эта ошибка определяется, с одной стороны, формой входного сигнала, с другой — инерционностью элементов, составляющих следящую систему. [2]
Динамическая ошибка в процессе регулирования определяется в основном величиной коэффициента колебательности т а / для доминирующих комплексных полюсов и степенью близости к началу плоскости р остальных полюсов и нулей замкнутой системы. При этом близкие к началу плоскости р нули увеличивают перерегулирование, а близкие, но не доминирующие полюсы — его уменьшают. [4]
Динамическая ошибка в этом случае носит колебательно-затухающий характер. [5]
Динамические ошибки в неустановившихся режимах движения могут дополнительно увеличиваться за счет переходных составляющих. Так как при уменьшении ап, ас и ат колебательность системы увеличивается, переходные составляющие ошибки могут возрастать, в то время как установившаяся динамическая ошибка ( 11 — 27) при этом уменьшается. [6]
Динамические ошибки возникают в установившемся режиме и обусловлены параметрами следящей системы и характером изменения измеряемого параметра. Флук-туационные ошибки вызваны влиянием помех и возмущений, которые воздействуют на следящую систему. [7]
Динамическая ошибка интегрирующих скоростных счетчиков, датчик которых реагирует на мгновенный расход, будет значительно больше, чем объемных счетчиков, отмеряющих определенные объемные порции потока. [9]
Динамическая ошибка не накапливается в процессе работы ШД и, как правило, остается в пределах я эл. [10]
Динамическая ошибка , ее величина, характер изменения во времени может быть различной в зависимости от параметров системы автоматического регулирования. [11]
Динамические ошибки в равной степени присущи как астатическим, так и статическим САУ. [12]
Динамические ошибки равны: стационарные — до 2 мкм, переходные — до 3 мкм. Прочие ошибки не превышают 4 мкм. Сложение этих ошибок как случайных величин с нормальным законом распределения в сумме дает ошибку в 13 мкм. [13]
Динамическая ошибка , ее величина, характер изменения во времени может быть различной в зависимости от параметров системы автоматического регулирования. [14]
Динамические ошибки в равной степени присущи как астатическим, так и статическим САУ. [15]
Как найти динамическую ошибку
Точность систем управления является важнейшим показателем их качества. Чем выше точность, тем выше качество системы. Однако предъявление повышенных требований к точности вызывает неоправданное удорожание системы, усложняет ее конструкцию. Недостаточная точность может привести к несоответствию характеристик системы условиям функционирования и необходимости ее повторной разработки. Поэтому на этапе проектирования системы должно быть проведено тщательное обоснование требуемых показателей точности.
В этом разделе рассматриваются методы определения ошибок, возникающих при работе систем управления с детерминированными входными воздействиями. Вначале анализируются ошибки систем в переходном режиме. Затем особое внимание уделено простым способам расчета ошибок систем в установившемся режиме. Будет показано, что все системы управления можно разделить по величине установившихся ошибок на системы без памяти, так называемые статические системы, и системы, обладающие памятью, – астатические системы управления.
Типовые входные воздействия
Для оценки качества работы систем управления рассматривают их поведение при некоторых типовых воздействиях. Обычно такими воздействиями служат следующие три основные вида функций:
а) ступенчатое воздействие: g(t) = , g(p) = ;
б) линейное воздействие: g(t) = t , t > 0 ; ;
в) квадратичное воздействие: /2 , t > 0 ; g(p) = .
В некоторых случаях рассматривают обобщенное полиномиальное воздействие:
Ступенчатое воздействие является одним из простейших, но именно с его помощью определяется ряд важных свойств систем управления, связанных с видом переходного процесса. Линейное и квадратичное воздействия часто бывают связаны с задачами слежения за координатами движущегося объекта. Тогда линейное воздействие соответствует движению объекта с постоянной скоростью; квадратичное — движению объекта с постоянным ускорением.
Переходные процессы при типовых воздействиях можно построить следующим образом. Пусть задана передаточная функция замкнутой системы управления W(p). Тогда
где g(p) – изображение соответствующего воздействия.
Например, если , то и для g(t) = g0 получим .
С помощью вычетов или по таблицам находим обратное преобразование Лапласа и получаем вид переходного процесса x(t) для заданного входного воздействия:
где Res x(p) – вычет функции x(p) в точке a.
Обычно реакция системы на ступенчатое воздействие имеет вид, показанный на рис. 21,а или рис. 21,б.
Переходный процесс, как правило, характеризуют двумя параметрами – длительностью переходного процесса (временем установления) и величиной перерегулирования.
Под временем установления tу понимают временной интервал, по истечении которого отклонение |x(t) — xуст | выходного процесса от установившегося значения xуст не превышает определенную величину, например, 0,1gо. Время установления является важным параметром САУ, позволяющим оценить ее быстродействие. Величину tу можно оценить приближенно по амплитудно-частотной характеристике системы. При заданной частоте среза . Для оценки качества системы используется также величина перерегулирования, определяемая соотношением .
В зависимости от характера собственных колебаний системы переходный процесс в ней может быть колебательным, как это показано на рис. 21, б, или плавным гладким, называемым апериодическим (рис. 21,а). Если корни характеристического уравнения системы действительны, то переходный процесс в ней апериодический. В случае комплексных корней характеристического уравнения собственные колебания устойчивой системы управления являются затухающими гармоническими и переходный процесс в системе имеет колебательный характер.
При малом запасе устойчивости САУ ее собственные колебания затухают медленно, и перерегулирование в переходном режиме получается значительным. Как следствие, величина перерегулирования может служить мерой запаса устойчивости системы. Для многих систем запас устойчивости считается достаточным, если величина перерегулирования .
Установившийся режим
При проектировании систем управления часто требуется оценить ошибку слежения в установившемся режиме . В зависимости от вида воздействия и свойств системы эта ошибка может быть нулевой, постоянной или бесконечно большой величиной.
Очень важно, что величина установившейся ошибки может быть легко найдена с помощью теоремы о предельном значении оригинала: .
При использовании этой теоремы нужно выразить величину ошибки e (p) через g(p). Для этого рассмотрим структурную схему замкнутой системы управления (рис. 22).
Очевидно, e (p) = g(p) — x(p) = g(p) — H(p)e(p). Отсюда или e (p) = He(p)g(p) , где He(p) = называется передаточной функцией системы управления от входного воздействия g(p) к ошибке слежения e(p). Таким образом, величину установившейся ошибки можно найти с помощью следующего соотношения:
где He(p) = 1/(1+H(p)); g(p) — изображение типового входного воздействия.
Пример 1. Рассмотрим систему управления, в составе которой нет интеграторов, например,
Найдем величину установившейся ошибки при ступенчатом входном воздействии g(t) = g0, t ³ 0. В этом случае
Предположим теперь, что входное воздействие изменяется линейно t или .
Тогда . Соответствующие входные воздействия и переходные процессы можно представить графиками на рис. 23,а и б.
Пример 2. Рассмотрим теперь систему, содержащую один интегратор. Типичным примером может быть система сервопривода (рис. 6) с .
Для ступенчатого воздействия g(t) = g0 или g(p) = получим
При линейном входном воздействии
Такие процессы можно проиллюстрировать соответствующими кривыми на рис.24, а и б.
Пример 3. Рассмотрим систему с двумя интеграторами. Пусть, например, . При ступенчатом воздействии .
Наконец, если входное воздействие квадратичное g(t) = at2/2 (g(p) = a/p3), то
Таким образом, в системе с двумя интеграторами может осуществляться слежение за квадратичным входным воздействием при конечной величине установившейся ошибки. Например, можно следить за координатами объекта, движущегося с постоянным ускорением.
Статические и астатические системы управления
Анализ рассмотренных примеров показывает, что системы управления, содержащие интегрирующие звенья, выгодно отличаются от систем без интеграторов. По этому признаку все системы делятся на статические системы, не содержащие интегрирующих звеньев, и астатические системы, которые содержат интеграторы. Системы с одним интегратором называются системами с астатизмом первого порядка. Системы с двумя интеграторами – системами с астатизмом второго порядка и т.д.
Для статических систем даже при неизменяющемся воздействии g(t) = g0 установившаяся ошибка имеет конечную величину g(t) = g0 . В системах с астатизмом первого порядка при ступенчатом воздействии установившаяся ошибка равна нулю, но при линейно изменяющемся воздействии . Наконец, в системах с астатизмом второго порядка ненулевая установившаяся ошибка появляется только при квадратичных входных воздействиях g(t) = at2 /2 и составляет величину eуст = a/k.
Какие же физические причины лежат в основе таких свойств астатических систем управления?
Рассмотрим систему управления с астатизмом второго порядка (рис. 25)
Пусть входной сигнал системы управления изменяется линейно: t. Как было установлено, в такой системе установившаяся ошибка равна нулю, т.е. e (t) =0. Каким же образом система работает при нулевом сигнале ошибки? Если x(t) = t , то на входе второго интегратора должен быть сигнал . Действительно, при нулевом рассогласовании e (t) =0 в системе с интеграторами возможно существование ненулевого выходного сигнала первого интегратора . Первый интегратор после окончания переходного процесса «запоминает» скорость изменения входного воздействия и в дальнейшем работа системы управления осуществляется по «памяти». Таким образом, физическим объяснением такого значительного различия статических и астатических систем является наличие памяти у астатических систем управления.
Итак, существуют простые возможности определения важнейшего показателя систем управления – величины их динамических ошибок. Детальный анализ переходных процессов в системах управления обычно выполняют с помощью моделирования на ПЭВМ. Вместе с тем величины установившихся ошибок легко находятся аналитически. При этом астатические системы управления, т.е. системы с интеграторами, имеют существенно лучшие показатели качества по сравнению со статическими системами.
© 2022 Научная библиотека
Копирование информации со страницы разрешается только с указанием ссылки на данный сайт
Радиоавтоматика: основы теории и принципы построения автоматических систем , страница 25
Определение динамических ошибок (по скорости, по ускорению) для статической и астатических систем.
Точность АС характеризуется величиной ошибки в установившемся режиме и зависит от характера воздействия, а также структуры и параметров системы.
Реальные воздействия в радиотехнических следящих системах описывается сложными (случайными) функциями времени. Однако при анализе точности управления часто используют простые детерминированные воздействия: постоянное ступенчатое, линейное, квадратичное и другие. Это позволяет упростить анализ и в то же время сохранить в модели задающего воздействия наиболее существенные признаки (начальное значение, скорость изменения, ускорение). Большинство систем радиоавтоматики описываются передаточными функциями вида
где Ki — общее усиление разомкнутой системы, i – число интегрирующих звеньев, определяющее порядок астатизма системы;
– полиномы, порядок которых определяется числом типовых звеньев (n и m соответственно инерционных и форсирующих), а коэффициенты полиномов – постоянными времени типовых звеньев.
11.1. Статические ошибки
Ошибка системы при постоянном (ступенчатом) воздействии x(t)=x0=const при t³0 называется статическойeст.
Для установившейся ошибки, учитывая, что изображение X(p)=x0/p, запишем:
Для статической системы (не содержащей интегрирующих звеньев) статическая ошибка равна
Таким образом, в статических системах установившееся значение управляемой переменной не равно заданному: меньше на величину ошибки, значение которой обратно пропорционально усилению К0 по постоянному току (обычно К0>>1).
Для астатических систем (i ³ 1) ошибка при постоянном воздействии
так как числитель в (11.2) равен нулю, а знаменатель равен Кi.
Отсутствие статической ошибки обусловило название таких систем – астатические.
11.2. Динамические ошибки
Ошибка, характеризующая точность замкнутой системы при меняющемся воздействии, называется динамической eд(t).
Любое детерминированное воздействие (при условии существования его производных d (k) /dt (k) , k=1, 2, …) можно представить в виде ряда
где x0 — начальное значение, — скорость изменения, — ускорение и т. д.
Для вычисления динамических ошибок при типовых воздействиях (линейном и квадратическом) представим выражение для ошибки в операторной форме:
Используя разложение передаточной функции Ke(p) в ряд Маклорена по степеням переменной р, перепишем (11.5) в виде
где C0, C1, C2, … — коэффициенты ошибок, определяемые как
Установившееся значение ошибки при произвольном воздействии x(t) на основании (11.6) определяется временным рядом
Чем меньше коэффициенты ошибок, тем выше точность системы при произвольном детерминированном воздействии. При вычислении коэффициентов Ck обычно ограничиваются только первыми тремя (для систем с астатизмом не выше второго порядка).
Коэффициент C0 в соответствии с (11.7) равен
Для статических систем (i=0) C0=1/(1+K0), а для астатических систем C0=0.
Определим динамические ошибки типовых систем при линейном воздействии (изменение с постоянной скоростью) x(t)=nxt.
В соответствии с формулой (11.8) динамическая ошибка (ошибка по скорости) определяется как
Для статической системы она равна
так как вклад составляющей C1nx значительно меньше, чем C0x(t), которая растет линейно со временем. Таким образом, скоростная ошибка в статических системах накапливается со временем со скоростью nx/(1+K0), что делает неприемлемым использование таких систем при меняющемся воздействии. Для астатических систем C0=0 и скоростная ошибка
Нахождение коэффициента ошибки C1 с использованием формулы (11.7) затруднительно. Более простой способ его вычисления основан на сравнении точного выражения для передаточной функции Ke(p) и аппроксимирующего ее ряда:
Уравнение (11.9) можно представить в виде
Полагая i= 1 (астатическая система первого порядка) и приравнивая коэффициенты при переменной p в левой и правой частях уравнения, находим
Таким образом, скоростная ошибка системы первого порядка астатизма eд=nx/K1 определяется усилением разомкнутой системы K1 и не зависит от времени. Параметр K1, имеющий размерность c –1 , называется добротностью системы по скорости (чем выше добротность, тем точнее система).
Для астатической системы второго порядка скоростная ошибка равна нулю, так как оба коэффициента C0=C1=0. Равенство C1=0 вытекает из уравнения (11.10), так как в правой части уравнения не содержится слагаемого, в которое входит переменная p (есть только с p 2 и выше).
Оценим динамические ошибки типовых систем при квадратичном воздействии (изменение с постоянным ускорением).
В соответствии с (11.8) для динамической ошибки (ошибки по ускорению) запишем
Для статической системы ошибка по ускорению равна
так как составляющие ошибки с коэффициентами C1 и C2 вносят пренебрежимо малый вклад в результирующую ошибку. Накопление ошибки по квадратичному закону исключает применение статических систем при наличии ускорения.
Для системы первого порядка астатизма ошибка по ускорению равна
(вкладом составляющей можно пренебречь). Накопление ошибки со временем (со скоростью ) не позволяет применять такие системы при наличии ускорения. Для астатической системы второго порядка ошибка по ускорению равна
Определение коэффициента ошибки C2 с использованием уравнения (11.7) сводится к приравниванию коэффициентов при p 2 в обеих частях уравнения:





























, то из
(индекс
служит обозначением установившегося режима) следует, что
. Таким образом, в асимптотически устойчивой системе с постоянными внешними воздействиями входные переменные всех интегрирующих звеньев в установитиемся режиме равны нулю.












